# The First Computations

The History of Mathematics, Part 2

Chuck Garner, Ph.D.

Department of Mathematics Rockdale Magnet School for Science and Technology

January 25, 2021

#### **First Computations**

Garner

**Egyptian Arithmetic** 

Numeral Arithmet

Position

## **Outline**

**First Computations** 

Garner

**Egyptian Arithmetic** 

**Babylonian Numerals and Arithmetic** 

The Method of False Position

Chinese Numerals

**Greek Numerals** 

## **Outline**

### **First Computations**

Garner

### **Egyptian Arithmetic**

## **Egyptian Arithmetic**

**Babylonian Numerals and Arithmetic** 

The Method of False Position

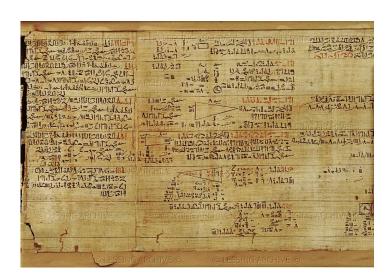
**Chinese Numerals** 

**Greek Numerals** 

# **Egyptian Arithmetic**

- ► Info from Moscow papyrus (c.1850 BC) and Rhind papyrus (c.1650 BC)
- Hieroglyphic addition and subtraction similar to present
- ► Hieratic arithmetic may have relied on tables
- Multiplication and division achieved by doubling

### **First Computations**


Garner

### **Egyptian Arithmetic**

Babylonian Numerals and Arithmetic

Position

# **The Rhind Papyrus**



#### **First Computations**

Garner

### **Egyptian Arithmetic**

abylonian Iumerals and

Position

lomework

Multiply 12 by 25.

### **First Computations**

Garner

## **Egyptian Arithmetic**

Babylonian Numerals and

Position Position

Chinese Numerals

\_\_\_\_\_

Multiply 12 by 25.

1 12

### **First Computations**

Garner

## **Egyptian Arithmetic**

Babylonian Numerals ar Arithmetic

Position

Consulta Nicona annola

Multiply 12 by 25.

| 1  | 12  |
|----|-----|
| 2  | 24  |
| 4  | 48  |
| 8  | 96  |
| 16 | 192 |

#### **First Computations**

Garner

## **Egyptian Arithmetic**

Numerals and Arithmetic

Greek Numerals

Multiply 12 by 25.

| 1′  | 12  |
|-----|-----|
| 2   | 24  |
| 4   | 48  |
| 8′  | 96  |
| 16′ | 192 |
| 25  | 300 |

### **First Computations**

Garner

### **Egyptian Arithmetic**

Numerals and Arithmetic

POSITION

Greek Numerals

Divide 858 by 26.

#### **First Computations**

Garner

## **Egyptian Arithmetic**

Babylonian Numerals and

Position Position

Chinese Numerals

Divide 858 by 26.

1 26

### **First Computations**

Garner

## **Egyptian Arithmetic**

Babylonian Numerals and

Position

Cilliese Nullierais

Divide 858 by 26.

| 1  | 26  |
|----|-----|
| 2  | 52  |
| 4  | 104 |
| 8  | 208 |
| 16 | 416 |
| 32 | 832 |

#### **First Computations**

Garner

## **Egyptian Arithmetic**

Babylonian Numerals an

Position

Divide 858 by 26.

| 1  | 26′  |
|----|------|
| 2  | 52   |
| 4  | 104  |
| 8  | 208  |
| 16 | 416  |
| 32 | 832′ |
| 33 | 858  |

### **First Computations**

Garner

### **Egyptian Arithmetic**

Babylonian Numerals an Arithmetic

Position

.. .

reek Numerals

- Only fractions were unit fractions fractions of the form 1/n.
- Notation: dot or accent or bar over the number
- Example:  $\dot{5} = 1/5$
- ► Special symbol for 2/3; only non-unit fraction
- Extensive tables; notably 2/n fractions

Complete 2/3 + 1/15 to 1.

#### **First Computations**

Garner

### **Egyptian Arithmetic**

Babylonian Numerals and

Position

Complete 2/3 + 1/15 to 1.

#### **First Computations**

Garner

## **Egyptian Arithmetic**

Babylonian Numerals and

POSITION

Grook Numerals

Complete 2/3 + 1/15 to 1.

$$\begin{array}{rrr}
1 & 15 \\
1/3 & 5 \\
1/5 & 3' \\
\hline
1/15 & 1' \\
\hline
1/5 + 1/15 & 4
\end{array}$$

#### **First Computations**

Garner

### **Egyptian Arithmetic**

Babylonian Numerals and

Position

Grook Numorals

Multiply by 7 to get 25.

#### **First Computations**

Garner

## **Egyptian Arithmetic**

Babylonian Numerals and

Position

Chinese Numerals

\_\_\_\_\_

Multiply by 7 to get 25.

#### **First Computations**

Garner

### **Egyptian Arithmetic**

Babylonian Numerals and

Position

Chinese Numerals

## **Outline**

**First Computations** 

Garner

**Egyptian Arithmetic** 

Babylonian Numerals and Arithmetic

Position

Greek Numer

omework

**Egyptian Arithmetic** 

**Babylonian Numerals and Arithmetic** 

The Method of False Position

**Chinese Numerals** 

**Greek Numerals** 

# **Babylonian Numerals**

- Used a base-60 positional system
- Cuneiform writing
- Only two numerals

### **First Computations**

Garner

**Egyptian Arithmetic** 

Babylonian Numerals and Arithmetic

Position

. .

# **Babylonian Numerals**

| 1  | 7   | 11 <b>&lt;</b> 7 | 21 ≪₹         | 31 ₩₹        | 41 <b>Æ</b> T | 51 <b>A</b> |
|----|-----|------------------|---------------|--------------|---------------|-------------|
| 2  | TY  | 12 <b>∢™</b>     | 22 <b>≪™</b>  | 32 <b>⋘™</b> | 42 <b>XYY</b> | 52.4 TY     |
| 3  | *** | 13 <b>≺™</b>     | 23 <b>≪ ™</b> | 33 <b>⋘™</b> | 43 🏖 mr       | 53          |
| 4  | *   | 14 <b>∢</b> ♥    | 24 ≪❤         | 34 ₩₩        | 44 🎸 💝        | 54          |
| 5  | *   | 15 ◀₩            |               | 35 ₩₩        |               |             |
| 6  | *** | 16 <b>∢</b> ∰    | 26 ≪∰         | 36 ₩₩        | 46 <b>Æ</b>   | 56 <b>4</b> |
| 7  | ₩   | 17 <b>&lt; 💝</b> | 27 <b>≪♥</b>  | 37 ₩₩        | 47 🎸 🐯        | 57 🏈 🔻      |
| 8  | ₩   | 18 ◀₩            | 28 ≪₩         |              | 48 🏕 🌹        |             |
| 9  | 퐦   | 19 ◀₩            | 29 <b>≪</b> ₩ | 39₩₩         | 49-女群         | 59 🏈        |
| 10 | ∢   | 20               | 30 ₩          | 40           | 50 🔅          |             |
|    |     |                  |               |              |               |             |

#### **First Computations**

Garner

**Egyptian Arithmetic** 

### Babylonian Numerals and Arithmetic

The Method of False Position

la wa associali

# **Babylonian Arithmetic**

- ▶ Info found on clay tablets c.2100-1600 BC
- Addition and subtraction similar to present procedure
- Used tables to multiply and divide
- Extensive tables of reciprocals since division by n was multiplication by 1/n
- ▶ This may explain why the base was 60

### **First Computations**

Garner

**Egyptian Arithmetic** 

Babylonian Numerals and Arithmetic

The Method of False Position

# **Babylonian Table of Reciprocals**

Babylonian tablet (BM 106444)



**First Computations** 

Garner

Egyptian Arithmetic

Babylonian Numerals and

Position

Arithmetic

Chinese Numeral

# **Babylonian Table of Reciprocals**

## **Translation**

| 2  | 30   | 16 | 3,45    | 45   | 1,20     |
|----|------|----|---------|------|----------|
| 3  | 20   | 18 | 3,20    | 48   | 1,15     |
| 4  | 15   | 20 | 3       | 50   | 1,12     |
| 5  | 12   | 24 | 2,30    | 54   | 1,6,40   |
| 6  | 10   | 25 | 2,24    | 1    | 1        |
| 8  | 7,30 | 27 | 2,13,20 | 1,4  | 56,15    |
| 9  | 6,40 | 30 | 2       | 1,12 | 50       |
| 10 | 6    | 32 | 1,52,30 | 1,15 | 48       |
| 12 | 5    | 36 | 1,40    | 1,20 | 45       |
| 15 | 4    | 40 | 1,30    | 1,21 | 44,26,40 |

### **First Computations**

Garner

**Egyptian Arithmetic** 

### Babylonian Numerals and Arithmetic

osition

la ma avu a ulc

## **Outline**

First Computations

Garner

**Egyptian Arithmetic** 

Numerals Arithmetic

The Method of False Position

Cililicae i valificial

omework

**Egyptian Arithmetic** 

**Babylonian Numerals and Arithmetic** 

The Method of False Position

**Chinese Numerals** 

**Greek Numerals** 

## **False Position**

Given a problem such as

Find a number so that the sum of itself and its quarter become 15.

**First Computations** 

Garner

**Egyptian Arithmetic** 

Babylonian Numerals an Arithmetic

The Method of False Position

Chinese Numerais

Find a number so that the sum of itself and its quarter become 15.

- Guess a solution; say 4
- ▶ Compute the problem assuming 4 is the solution:

$$4+\frac{1}{4}\cdot 4=5$$

**First Computations** 

Garner

**Egyptian Arithmetic** 

Sabyloniar Numerals a Arithmetic

The Method of False Position

.....

Jimese Hameran.

.....

Given a problem such as

Find a number so that the sum of itself and its quarter become 15.

- Guess a solution; say 4
- Compute the problem assuming 4 is the solution:

$$4+\frac{1}{4}\cdot 4=5$$

- But the result should be 15
- ▶ Note that  $5 \times 3 = 15$

Given a problem such as

Find a number so that the sum of itself and its quarter become 15.

- Guess a solution; say 4
- Compute the problem assuming 4 is the solution:

$$4+\frac{1}{4}\cdot 4=5$$

- But the result should be 15
- ▶ Note that  $5 \times 3 = 15$
- Therefore, multiply the guess by 3
- Answer is 12

## **False Position**

Why does this work?

Given a problem p(x) = n, where p(x) is linear, we

- ► Guess a solution, say a
- ▶ Compute p(a)
- ► Then since  $\frac{x}{a} = \frac{p(x)}{p(a)}$  and p(x) = n,

### **First Computations**

Garner

Egyptian Arithmetic

Babylonian Iumerals and

### The Method of False Position

Cililese Numeral

Greek Numer

Chinese Numerals

JI EEK NUITIET

Homework

Why does this work?

Given a problem p(x) = n, where p(x) is linear, we

- ► Guess a solution, say *a*
- ► Compute *p*(*a*)
- ► Then since  $\frac{x}{a} = \frac{p(x)}{p(a)}$  and p(x) = n,
- ► Solution is  $a \times \frac{p(x)}{p(a)} = a \times \frac{n}{p(a)}$

## **False Position**

Translated from an ancient Babylonian tablet:

A number and its one-seventh. This is added to one-eleventh of itself. Result 60. Find the number.

### **First Computations**

Garner

**Egyptian Arithmetic** 

Numerals and
Arithmetic

The Method of False Position

Chinese Numerals

-----

## The Method of False Position

**Chinese Numerals** 

Homework

Translated from an ancient Babylonian tablet:

A number and its one-seventh. This is added to one-eleventh of itself. Result 60. Find the number.

Mathematical translation:

Solve 
$$x + \frac{1}{7}x + \frac{1}{11}\left(x + \frac{1}{7}x\right) = 60.$$

## **Outline**

First Computations

Garner

**Egyptian Arithmetic** 

Babylonian Numerals and

Position

**Chinese Numerals** 

Greek Numer

omework

**Egyptian Arithmetic** 

**Babylonian Numerals and Arithmetic** 

The Method of False Position

**Chinese Numerals** 

**Greek Numerals** 

## **Chinese Numerals**

- ► Two kinds:
  - oracular, additive notation
  - ▶ rods, positional base-10 notation

#### **First Computations**

Garner

**Egyptian Arithmetic** 

Babylonian Numerals and

The Method of False Position

**Chinese Numerals** 

**Greek Numerals** 

## **Oracular Chinese Numerals**

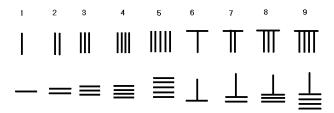
Earliest known use from 1045 BC

#### **First Computations**

Garner

**Egyptian Arithmetic** 

abylonian Iumerals and


The Method of False Position

**Chinese Numerals** 

**Greek Numerals** 

## **Rod Chinese Numerals**

Earliest known use from 4th century BC



#### **First Computations**

Garner

**Egyptian Arithmetic** 

Numerals an Arithmetic

Position

**Chinese Numerals** 

Greek Numeral

## **Outline**

First Computations

Garner

**Egyptian Arithmetic** 

Babylonian Numerals an

Position

Greek Numerals

. .

omework

**Egyptian Arithmetic** 

**Babylonian Numerals and Arithmetic** 

The Method of False Position

**Chinese Numerals** 

**Greek Numerals** 

## **Greek Numerals**

First Computations

Garner

**Egyptian Arithmetic** 

Babylonia Numerals Arithmetic

Position

Chinese Numerals

**Greek Numerals** 

- ► Two kinds: acrophonic and alphabetic, both additive
- Alphabetic numerals are letters
- Distinguish numbers from words through context

## **Greek Acrophonic Numerals**

Used as far back as 1000 BC

$$XXFH\Delta\Delta\Delta\Delta\GammaII$$
  
2×1000 + 500 + 100 + 4x10 + 5 + 2×1 = 2647

Greek Acrophonic Numerals and Example

#### **First Computations**

Garner

**Egyptian Arithmetic** 

abylonian umerals and

Position

Chinese Numerals

## **Greek Numerals**

# **Greek Alphabetic Numerals**

Used from 4th century BC

Greek Alphabetic Numerals

#### **First Computations**

Garner

**Egyptian Arithmetic** 

Babylonian Iumerals a Arithmetic

Position

Greek Numerals

## **Outline**

First Computations

Garner

**Egyptian Arithmetic** 

Numerals an

Position

Homework

**Egyptian Arithmetic** 

**Babylonian Numerals and Arithmetic** 

The Method of False Position

**Chinese Numerals** 

**Greek Numerals** 

## **Homework**

Garner

**First Computations** 

Egyptian Arithmetic

Arithmetic

Position

Homework

Last-Minute Problems, #1 – due February 1

Using false position for systems of equations;Math Through the Ages, Sketch 9

Next: Two Mysteries