1. Evaluate the following limits.

(a)
$$\lim_{\substack{x \to 0 \ y \to 0}} \frac{xy}{x^2 + y^2}$$

(b)
$$\lim_{\substack{x \to 0 \ y \to 0}} \frac{x^2 - y^2}{x^2 + y^2}$$

(c)
$$\lim_{\substack{x \to 0 \ y \to 0}} \frac{x^2 + \sin^2 y}{y^2}$$

(d)
$$\lim_{\substack{x \to 1 \ y \to 1}} \frac{x - y^4}{x^3 - y^4}$$

(e)
$$\lim_{\substack{x\to 0\\y\to 0}} f(x,y)$$
 where

$$f(x,y) = \begin{cases} \frac{3x^2y}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

2. Describe the regions over which the following functions are continuous.

(a)
$$f(x,y) = \frac{1}{1-x^2-y^2}$$

(b) $f(x,y) = \log(x^2-y)$
(c) $f(x,y) = \arctan(x+\sqrt{y})$
(d) $f(x,y,z) = \frac{xyz}{x^2+y^2-z}$
(e) $f(x,y) = \begin{cases} \frac{3x^2y}{x^2+y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$

3. Consider the relations

$$x = u^2 - v^2, \qquad y = 2uv.$$

Find the Jacobians $\frac{\partial(x,y)}{\partial(u,v)}$ and $\frac{\partial(u,v)}{\partial(x,y)}$.

4. For the polar relations

$$x = r\cos\theta, \qquad y = r\sin\theta,$$

find the Jacobian $\frac{\partial(x, y)}{\partial(r, \theta)}$; then find an expression for $\frac{\partial(r, \theta)}{\partial(x, y)}$ without computing its Jacobian.

5. Find the tangent plane to the surface

 $2x^2 + y^2 + z^2 = 25$

at the point $(2, \frac{5}{2}\sqrt{2}, \frac{3}{2}\sqrt{2})$.

6. Find the tangent line to the curve $x = 2\sqrt{2} \sin t$, $y = 5\cos t$, $z = 3\sin t$ at the point where $t = \frac{\pi}{4}$.

7. Find
$$\frac{\partial z}{\partial x}$$
 and $\frac{\partial z}{\partial y}$ for each of the following.
(a) $z = e^{xy}$
(b) $z = x \sin(x+y) - y \cos(x-y)$
(c) $z = \sqrt{x^2 - 3y}$
(d) $z = \frac{e^y}{x^2y^2}$
(e) $z = \arctan(x + \sqrt{y})$

- 8. Find $\frac{\partial w}{\partial x}$, $\frac{\partial w}{\partial y}$, and $\frac{\partial w}{\partial z}$ for $w = f(x, y, z) = \log(x^2 + yz + z^2)$.
- **9.** Consider the function $z = \frac{x}{x+y}$. Find Δz and dz in terms of Δx and Δy at x = 1, y = 1. Then compare these two functions for $\Delta x = 0.01$ and $\Delta y = 0.02$.
- **10.** (a) Find the Jacobian matrix of

$$y_1 = x_1 x_2 x_3, \quad y_2 = x_1^2 x_3$$

(b) Find the Jacobian matrix of w = x² + y² − z².
(c) Find ∂(u,v)/∂(x,v) for

$$u = x^3 - 3xy^2$$
, $v = 3x^2y - y^3$

11. Find
$$\frac{\partial(u, v, w)}{\partial(x, y, z)}$$
 for
 $u = xe^y \cos z, \quad v = xe^y \sin z, \quad w = xe^y$
at the point $(\sqrt{2}, \ln 2, \frac{\pi}{4})$.

12. Let $z = x^3 - 3x^2y$ and assume x and y are func- **14.** Consider the functions tions of t such that for t = 5 we have x = 7, y = $y_1 = u_2^2 + u_3^2$ 2, $\frac{dx}{dt} = 3$, and $\frac{dy}{dt} = -1$. Find $\frac{dz}{dt}$ for t = 5. $y_2 = u_1^2 + u_3^2$ $y_3 = u_1^2 + u_2^2$ $u_1 = x_1^2 + x_1 x_2$ $u_2 = x_1^2 + 2x_1x_2$ **13.** Consider the mapping $u = x + y^2 z$, $v = x^2 y - z^2 z$ $u_3 = x_1^2 + 3x_1x_2$ $z, w = x^2 + y^2 + z^2.$ Find the Jacobian $\left(\frac{\partial y_i}{\partial x_i}\right)$ in the form of a prod-(a) Find the Jacobian matrix. uct of two matrices and then evaluate the Jacobian for $x_1 = 1$, $x_2 = 0$. (b) Evaluate the Jacobian at the point (1,1,2). **15.** Find $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$ for (c) Does the Jacobian at the point (1,1,2) represent a one-to-one and onto mapping? Explain. $x^{2} + xu - yv^{2} + uv = 1$, xu - 2yv = 1

at the point where x = 0, y = -1.