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Day 1

1 Section 1.2, Vectors in Space

Objective. Students will understand the purpose of the course and the class-
room policies. Students will compute and interpret cross products and dot

prodcuts of vectors.

• Rationale for the course;

• overview of 1st semester;

• hand-out syllabus;

• brief outline of second semester;

• issue textbooks;

• describe grading policies.

Read Section 1.1 in text.

• Distance Formula. —[[Larson 79 and 80, Thomas 10.5 and 10.6]]—

• Dot product defined as v ·w = ||v||||w|| cos θ. —[[Larson 81]]—

• Algebraic rules for the dot product (Eq. 1.11, page 4).

• Direction angles and direction cosines. —[[Thomas 10.4]]—

• Cross products: u×v is perpendicular to both u and v, and ||u×v|| =

||u||||v|| sin θ is area of parallelogram with sides u and v. —[[Thomas

10.15]]—

• Algebraic rules for the cross product (Eq. 1.19, page 5).

• Vector triple products.

HOMEWORK FOR DAY 1. Page 15, #1 parts a–d, #2
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HOMEWORK ANSWERS. #1 See text

#2

a) 0

b) 〈−1, 7, 4〉

c)
√

6

d) 90◦

e) 〈−38, 14, 26〉

f) 42 and −42

g) 0

h) cosα = 1/
√

6, cosβ = −1/
√

6, cos γ = 2/
√

6

i) 6/
√

30
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Day 2

2 Section 1.3, Linear Independence; Lines and
Planes in Space

Objective. Students will determine whether a given set of vectors is linearly

dependent or linearly independent. Students will use vectors to represent
properties of lines and planes in space.

Linear combination: c1u1 + c2u2 + c3u3 for constants ci and vectors ui.
Linearly independent: do not represent the same line; i.e., the only way

the linear combination equals 0 is if each constant is zero.
Linearly dependent: lie on the same line; i.e., there are nonzero constants

so that the linear combination equals 0.

Theorem 2.1. Any four vectors in space are linearly dependent.

Proof. If one of the vectors is the zero vector, we are done. So assume none

of the four vectors u1, u2, u3, u4 is the zero vector. Then we have two
cases: either u1, u2, u3 are linearly dependent, or u1, u2, u3 are linearly

independent.
In the first case, there exist nonzero constants such that c1u1+c2u2+c3u3 =

0. But then c1u1 + c2u2 + c3u3 + 0u4 = 0, so the four vectors are linearly
dependent.

In the second case, the three vectors are not coplanar, so they can form
three edges of a parallelpiped. Then u4 can be represented as a linear com-
bination in the other three vectors (akin to representing a vector in terms of

i, j, and k). Hence, c1u1 + c2u2 + c3u3 − u4 = 0 so that the four vectors are
linearly dependent.

Every linearly independent triple of vectors can serve as a basis for the

space.
If P1(x1, y1, z1) is a point in the plane and n = Ai + Bj + Ck is a normal

vector, then P is in the plane when n ·
−→
P1P= 0, or A(x− x1) +B(y − y1) +

C(z − z1) = 0, or Ax+By + Cz +D = 0.
Every linear equation Ax + By + Cz + D = 0 represents a plane with

n = Ai +Bj + Ck as a normal vector. —[[Larson 84]]—
If P1(x1, y1, z1) is a point on a line and v = ai+ bj+ ck is a nonzero vector

on the line, then P is on the line when v ×
−→
P1P= 0. —[[Larson 83]]—
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Day 2

Hence,
−→
P1P must be a scalar t times v. This is the parametric represen-

tation of a line: x = x1 + at, y = y1 + bt, z = z1 + ct.
Distance from a point (x0, y0, z0) to a line with parameter t is

√

(x1 + at− x0)2 + (y1 + bt− y0)2 + (z1 + ct− z0)2.

Distance from a point (x0, y0, z0) to a plane Ax+By + Cz +D = 0 is

|Ax0 +By0 + Cz0 +D|√
A2 + B2 + C2

.

Example 2.1. Find the distance between (1, 2, 2) and the line x = 1 + t, y =
2 − t, z = 3 + t.

√

(1 + t− 1)2 + (2 − t− 2)2 + (3 + t− 2)2 =
√

3t2 + 2t+ 1

Example 2.2. Find parametric equations for the line passing through (1, 2, 2)

and is perpendicular to the line x = 1 + t, y = 2 − t, z = 3 + t.

The line vector is i− j + k; the normal vector is i + 2j + k. Thus, the line

is x = 1 + t, y = 2 + 2t, z = 2 + t.

Example 2.3. Find parametric equations for the line passing through (1, 2, 2)

and is perpendicular to the line x = 1+t, y = 2−t, z = 3+t and perpendicular
to x = 2 + t, y = 5 + 2t, z = 7 + 4t.

To find the normal vector, compute the cross product of the two line
vectors to get −6i−3j+3k; hence, the line is x = 1−6t, y = 2−3t, z = 2+3t.

HOMEWORK FOR DAY 2. Page 16, #5, #6, parts a, b, and c, #7, parts a
and b
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HOMEWORK ANSWERS. #5 All are dependent.

#6

a) P1 = (2, 1, 0) and
−→
P1P= 〈1, 1, 5〉, so the line is x = 2+t, y = 1+t, z = 5t.

b) Line is x = 1 − 5t, y = 1 + 2t, z = 2 + 3t.

c) Line is x = 5t, y = −t, z = t.

#7

a) z-coordinate doesn’t matter; plane is 2x− y = 0.

b) P1 = (1, 2, 2) and n = 〈−1, 5,−4〉, so the plane is −(x− 1) + 5(y− 2)−
4(z − 2) = 0 or −x+ 5y − 4z − 1 = 0.
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3 Section 1.4, Determinants

Objective. Students will use properties of determinants to evaluate determi-
nants.

A 2-by-2 determinant is

∣

∣

∣

∣

a b

c d

∣

∣

∣

∣

= ad− bc.

Higher-order determinants can be reduced recursively.
∣

∣

∣

∣

∣

∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣

∣

∣

∣

∣

∣

= a1

∣

∣

∣

∣

b2 c2
b3 c3

∣

∣

∣

∣

− b1

∣

∣

∣

∣

a2 c2
a3 c3

∣

∣

∣

∣

+ c1

∣

∣

∣

∣

a2 b2
a3 b3

∣

∣

∣

∣

Six rules of determinants.

1. Rows and columns can be interchanged.

2. Interchanging two rows(columns) changes the sign of the det.

3. A common factor of any row(column) can be placed in front of the det.

4. If one row(column) is a multiple of another, then det equals zero.

5. Determinants differing in only one row(column) can be added by adding
the rows(columns) and leaving the others unchanged.

6. Row operations leave det unchanged.

Let (x1, y1) and (x2, y2) be two points in the xy-plane. Then
∣

∣

∣

∣

∣

∣

x1 y1 1

x2 y2 1
x y 1

∣

∣

∣

∣

∣

∣

= 0

is a line. If (x3, y3) is a third point, then

1

2

∣

∣

∣

∣

∣

∣

x1 y1 1

x2 y2 1
x3 y3 1

∣

∣

∣

∣

∣

∣

is the area of the triangle formed by the three points.
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If u,v,w are three vectors in space, then one can get a determinant

D =

∣

∣

∣

∣

∣

∣

u

v

w

∣

∣

∣

∣

∣

∣

= u · v ×w = w · u × v = v ·w × u.

Called scalar triple products, · and × can be interchanged; and interchang-
ing two vectors changes the sign of the product.
D is also the volume of parallelepiped with edges u,v,w; D = |u ×

v||w| cosφ where |w| cosφ is the height and |u × v| is the area of the base.
—[[Thomas 10.19]]—

HOMEWORK FOR DAY 3. Page 16, #4, #10
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HOMEWORK ANSWERS. #10

a) −17

b) −7

c) 2

d) −1

e) −36

f) abc[bc(c− b) − ac(c− a) + ab(b− a)]
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Day 4

4 Sections 1.5, 1.6, and 1.7, Systems of Lin-
ear Equations, Matrices, Matrix Addition, and
Scalar Multiplication

Objective. Students will use Cramer’s Rule to solve systems of equations.
Students will understand basic matrix terminology. Students will add and

subtract matrices and multiply matrices and scalars.

Cramer’s Rule: x = Dx/D, y = Dy/D, z = Dz/D where D is the det

of the coefficient matrix, and Dx, Dy, Dz is the det of the coefficient matrix
with column 1, 2, 3 replaced by the column of equalities. If D 6= 0 and

Dx = Dy = Dz = 0 then there is only the trivial solution x = y = z = 0.
If D = Dx = Dy = Dz = 0 then there are infinitely many solutions. This

implies that the row vectors are linearly dependent. Then we can find nonzero
constants; those constants times a parameter t solve the system.

Example 4.1. Solve the system:











2x− 3y + z = 0

x+ y − z = 0

x− 4y + 2z = −1

Example 4.2. Solve the system:











2x− y + 2z = −1

x− 2y + 3z = −4

3x+ 2y + 2z = 3

Example 4.3. Solve the system:











x+ y + z = 0

−4x+ 2y − z = −3

−5x+ y − 2z = −3

Example 4.4. Solve the system:























x+ y + z + w = 0

x− z = 0

2x+ y = 0

y − w = 0

A matrix is a rectangular array of real numbers (or complex numbers)
denoted with capital letters. Am×n = aij is a matrix (named A) with m rows
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and n columns and entries aij where aij is the entry on the ith row in the

jth column. An is a square matrix; that is, it has n rows and n columns.
In (or just I) is the n× n identity matrix with entries δij, where δij = 1 if

i = j and is 0 otherwise. (The symbol δij is the Kronecker delta symbol.) In

other words, I has 1s along the main diagonal and 0s everywhere else.
A 1× n matrix is called a row vector ; an n× 1 matrix is a column vector.

Rules of Matrix Arithmetic (for matrices A,B,C and scalars a, b, c):

1. A+ B = B +A

2. A+ (B + C) = (A+B) + C

3. c(A+ B) = cA+ cB

4. (a+ b)C = aC + bC

5. a(bC) = (ab)C

6. 1A = A

7. 0A = O

8. A+ O = A

9. A+ C = B iff C = B −A

Example 4.5. Prove Rule 3 above.

HOMEWORK FOR DAY 4. Page 17, #3, #13 parts c and d; Page 20, #2
(change directions to: identify which are not meaningful); Page 21, #3 part

a, #4 part a, #5 part c
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HOMEWORK ANSWERS. #3 see text

#13 c) x = 6
−4 = −3

2, y = −8
−4 = 2, z = −10

−4 = 5
2 .

#13 d) x = t, y = −t, z = −2t, for t ∈ R.
#2 c and k are not meaningful

#3 a) X = D − C =

[

−1 −4
−2 −1

]

#4 a) X = 1
2(N + P ) =





3
2 3
−1

2 1

5 2



 and Y = N −X =





−1
2 1

1
2 2

2 −1





#5 c)

(a+ b)C =

[

(a+ b)c11 (a+ b)c12

(a+ b)c21 (a+ b)c22

]

=

[

ac11 + bc11 ac12 + bc12

ac21 + bc21 ac22 + bc22

]

=

[

ac11 ac12

ac21 ac22

] [

bc11 bc12

bc21 bc22

]

= aC + bC
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Day 5

5 Section 1.8, Matrix Multiplication

Objective. Students will understand the defintion and use of matrix multi-
plication.

Matrix multiplication comes from the Cayley product of linear transfor-
mations.

For example, a point (1,−1) in the plane undergoes two transformations:

x′ = 2x− y x′′ = x′ − y′

y′ = x+ 3y y′′ = x′ + 2y′

Hence, (1,−1) ⇒ (3,−2) ⇒ (5,−1). The net effect is obtained by the
single transformation

x′′ = x− 4y

y′′ = 4x+ 5y.

Therefore we define multiplication so that
[

2 −1

1 3

] [

1 −1

1 2

]

=

[

1 −4

4 5

]

If Am×p and Bp×n are multiplied, then the product is (AB)m×n. Hence, if
An and a column vector x = Xn×1 are multiplied, the result is another n× 1

matrix (column vector).
Powers of matrices are defined in the usual way, A2 = AA, A3 = AA2, etc.
Rules of Matrix Multiplication (for matrices A,B,C and scalars c, k, l):

10. A(BC) = (AB)C

11. AI = A

12. IA = A

13. A(B + C) = AB + AC

14. c(AB) = A(cB)

15. AO = O

16. OA = O

17. A0 = I

18. AkAl = Ak+l

19. (Ak)l = Akl

20. Ax = Bx for all x iff A = B

HOMEWORK FOR DAY 5. Page 25, #1 (change directions to: identify which

are not meaningful); Page 26, #4 part a, #6 (#8 extra credit)
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HOMEWORK ANSWERS. #1 a, c, h, s are not meaningful

#4 a) IA =

[

1 0

0 1

] [

a11 a12

a21 a22

]

=

[

a11 a12

a21 a22

]

= A.

#6 Only when AB = BA.
#8 Assume all entries of B are distinct and that A 6= O. Then AB = BA

implies corresponding entries are equal:
[

a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

]

=

[

b11a11 + b12a21 b11a12 + b12a22

b21a11 + b22a21 b21a12 + b22a22

]

.

Hence, the upper right entries are equal, as are the lower left entries:

a11b12 + a12b22 = b11a12 + b12a22

a21b11 + a22b21 = b21a11 + b22a21

Adding equations, setting equal to zero, and factoring, we have

(a11 − a22)(b12 − b21) + (a12 − a21)(b22 − b11) = 0.

But since all entries of B are distinct, it must be that a11 = a22 and a12 = a21.

Note that the upper left entries are equal. This gives a12b21 = b12a21; but
since a12 = a21, the only way this could be true is if a12 = a21 = 0. Hence,

a11 = a22 = c for some constant c. Therefore, A =

[

c 0

0 c

]

= cI.
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6 Section 1.9, Matrix Inverses

Objective. Students will use properties of matrix inverses to prove theorems
involving matrix inverses.

If AB = I, then detA detB = 1, or detA = 1
detB .

detA 6= 0 ⇐⇒ A−1 exists ⇐⇒ the system is solvable ⇐⇒ A is nonsingular.

Theorem 6.1. If AB = I, then BA = I.

Proof. BA = BAI = BABB−1 = B(AB)B−1 = BIB−1 = BB−1 = I.

Theorem 6.2. The inverse of a matrix is unique.

Proof. Assume AB = I and AC = I. Then by the theorem above, BA = I

and CA = I. Thus, C = CI = CAB = IB = B.

Rules of Matrix Inverses (for matrices A,B and scalars c, p, q, r):

21. (AB)−1 = B−1A−1

22. (cA)−1 = 1
cA

−1, for c 6= 0

23. (A−1)−1 = A

24. (A−1)p = A−p = (Ap)−1

25. (Ap+q)−1 = A−p−q

26. ApAqAr = I iff p+ q + r = 0

Example 6.1. Simplify: [(AB)−1A−2]−1.

Systems of equations can be represented by Ax = b. The solution is

x = A−1b.

Example 6.2. Solve the systems from examples 5.1 through 5.4.

Example 6.3. Solve for X, and state which matrices are assumed to be non-
singular: X + Y = A, X +BY = C

HOMEWORK FOR DAY 6. Pages 30-31, #2 parts c, f, h, and j; #3 parts b

and c; #4 part a; #8 parts c and d
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HOMEWORK ANSWERS. #2 c)

[

107
17 −279

34

−32
17

89
34

]

f)

[

−43
17

27
17

]

#2 h)

[

−18 9 −13

13 −4 8

]

j)
[

5
2 1 −3

2

]

.

#3 b) C−1B−1A−1ABC = I

#3 c)
[

B−1(A−1)−2A−2B−1
]−2

= (B−1B−1)−2 = (B−2)−2 = B4

#4 a) A−1B−1 = (BA)−1 = (AB)−1 = B−1A−1

#8 c) Subtract the two equations to get (A − C)Y = B − D. Therefore
Y = (A− C)−1(B −D) and X = B −AY , assuming A− C is nonsingular.

#8 d) Multiply the first equation by B−1 and the second by E−1, then
subtract to get

(B−1A− E−1D)X = B−1C −E−1F.

Thus, X = (B−1A − E−1D)−1(B−1C − E−1F ) and Y = B−1(C − AX),
assuming B, E, and B−1A− E−1D are each nonsingular.
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7 Section 1.10, Gaussian Elimination

Objective. Students will use Gaussian elimination to solve systems of equa-
tions.

To solve the system Ax = b, form the augmented matrix B = [A b].
The following row operations are allowed to transform the matrix A to an

upper-triangular matrix–a matrix with all zeros under the main diagonal.

i) adding multiples of one row to another row

ii) interchanging two rows

iii) multiplying a row by a nonzero scalar

As A is transformed, so is b. By back-substitution, one obtains the solu-

tion.
If A is singular and b 6= 0, then there is no solution, and one has r rows of

nonzero entries in the upper-triangular matrix, with n− r rows of zeros. The
number r is the rank of the matrix. (Clearly, if r = n then A is nonsingular.)

If A is singular and b = 0, then there are infinite solutions.

Example 7.1. Solve the systems in examples 5.1 through 5.4.

Example 7.2. Solve the system:

{

x− 3y + z = 4

−2x− 19y + 3z = −3

HOMEWORK FOR DAY 7. Page 34, #3 parts a and b, #5 parts a and b, #6
part a
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HOMEWORK ANSWERS. #3 a) The augmented matrix is





2 1 −1 3

0 −1 1 1
0 0 0 0



,

the solutions are x = 2, y = t− 1, z = t for some parameter t.

#3 b) The augmented matrix is









1 1 −1 1 5

0 2 0 −1 1
0 0 2 −3 −1

0 0 0 1 1









, the solutions are

x = 4, y = z = w = 1.

#5 a) The augmented matrix is





2 −1 1 3
0 −5 3 1

0 0 0 0



, the solutions are x =

1
5(7 − t), y = 1

5(3t− 1), z = t for some parameter t.

#5 b) The augmented matrix is





1 1 −1 1
0 3

2 −1
2 0

0 0 0 −1
2



, and so there are no

solutions.

#6 a) The augmented matrix is





a1 b1 c1 k1

a2 b2 c2 k2

0 0 0 0



. Multiplying the second

row by −a1

a2
and adding the first and second results in





a1 b1 c1 k1

0 b′ c′ k′

0 0 0 0



,

where

b′ = b1 −
a1

a2
b2, c

′ = c1 −
a1

a2
c2, and k′ = k1 −

a1

a2
k2.

Letting z = t gives

y =
k′ − c′t

b′
=
a2k1 − a1k2 − (a2c1 − a1c2)t

a2b1 − a1b2

and

x =
k1 − b1k

′/b′ + (b1c
′/b′ − c1)t

a1
=
b1k2 − b2k1 + (b2c1 − b1c2)t

a2b1 − a1b2
.

Hence, the solutions match the parametric form of a line in space given as
Equation 1.28 on page 9.
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Day 8

8 Section 1.11A, Eigenvalues and Eigenvec-
tors

Objective. Students will find the eigenvalues of matrices by solving the char-

acteristic polynomials.

Notice:





1 2 2
2 3 −2

−5 3 8









1
0

1



 =





3
0

3



 = 3





1
0

1



. So A and 3 have the

same effect; i.e., there is a scalar λ and nonzero vector v such that Av = λv.

The scalar λ is called an eignevalue and the vector v is called an eigenvector.

Av = λv ⇒ Av − λv = 0 ⇒ (A− λI)v = 0

Finding det(A−λI) results in a polynomial in λ, called the characteristic
polynomial. The roots of det(A − λI) = 0 are the eigenvalues. The set of

eigenvalues is the spectrum.

Example 8.1. Find the eigenvalues and eigenvectors of

[

1 2
3 2

]

.

Answer: λ1,2 = −1, 4 and v1,2 = k1〈−1, 1〉, k2〈2, 3〉.

Example 8.2. Find the eigenvalues and eigenvectors of





−3 1 0

1 −2 1
0 1 −3





Characteristic polynomial is p(λ) = λ3 + 8λ2 + 19λ + 12; eigenvalues
are λ1,2,3 = −1,−3,−4. Eigenvectors are v1,2,3 = k1〈1, 2, 1〉, k2〈1, 0,−1〉,
k3〈1,−1, 1〉.

Examining the char poly gives us another way to calculate eigenvalues

that is quickly done for small matrices. Consider the matrix

A =





a11 a12 a13

a21 a22 a23

a31 a32 a33





and its char poly

pA(λ) = λ3 − bλ2 + cλ− d = − det(A− λI) = 0
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Note that b is the sum of the diagonal entries (called the trace of A), d is

detA, and c is
∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

+

∣

∣

∣

∣

a11 a13

a31 a33

∣

∣

∣

∣

+

∣

∣

∣

∣

a22 a23

a32 a33

∣

∣

∣

∣

.

These smaller determinants are the princpal minors of A.

Example 8.3. Find the eigenvalues and eigenvectors of A =





−3 1 0

1 −2 1
0 1 −3





We see that the trace of A is −8; detA = −12, and the sum of the principal

minors is 5 + 9 + 5 = 19. Hence the char poly is p(λ) = λ3 + 8λ2 + 19λ+ 12
as before.

Clearly it is possible to have imaginary eigenvalues; what ensures real
eigenvalues? We introduce the transpose of a matrix: The transpose AT of

a matrix A is obtained by interchanging rows and columns. A matrix A
is symmetric if A = AT . All eigenvalues of a symmetric matrix are real.

Moreover, we the following:

Theorem 8.1. Every n × n symmetric matrix has n mutually orthogonal
eigenvectors.

Example 8.4. Verify that the eigenvectors of Example 8.2 are mutually or-
thogonal.

Example 8.5. Find the eigenvalues and eigenvectors of B =





0 2 2
2 0 2
2 2 0





The char poly is pB(λ) = (λ + 2)2(λ − 4), the eigenvalues are λ1,2,3 =

−2,−2, 4. The eigenvector for λ = −2 is a linear combination: v1,2 =
k1〈−1, 1, 0〉 + k2〈−1, 0, 1〉. The remaining eigenvector is v3 = k3〈1, 1, 1〉.
But the three vectors are not mutually orthogonal since there is a repeated
eigenvalue; to find the third orthogonal vector, we compute the cross product

of either v1 and v3 or of v2 and v3.

HOMEWORK FOR DAY 8. Page 38, #1, #2 part a, #4 parts c and d
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HOMEWORK ANSWERS. #1 b) Characteristic polynomial is λ2 − 7λ, eigen-

values are 0 and 7, eigenvectors are k〈−3, 1〉 and k〈1, 2〉.
#1 c) Characteristic polynomial is −λ3 + 6λ2 − 11λ + 6, eigenvalues are

1, 2, and 3, eigenvectors are k〈0, 2, 1〉, k〈1, 2, 0〉, and k〈1, 1,−1〉.
#4 c) Characteristic polynomial is (λ+ 1)2, eigenvalue is −1, eigenvector

is k〈1, 1〉.
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9 Section 1.11B, Similar Matrices

Objective. Students will determine whether two matrices are similar.

Further properties of eigenvalues:

• A and AT have the same eigenvalues.

• If p(x) is any polynomial and λ is an eigenvalue of A, then p(λ) is an

eigenvalue of p(A).

• A matrix is nonsingular iff its eigenvalues are all nonzero.

• If A is nonsingular, then the eigenvalues of A−1 are reciprocals of the
eigenvalues for A.

For matrices A,B, if there exsits a nonsingular C such that B = C−1AC,
then B is similar to A; since A = (C−1)−1BC−1, then A is similar to B as
well.

Theorem 9.1. If A and B are similar, they have the same characteristic
polynomial.

Proof.

det(B − λI) = det(C−1AC − λI) = det(C−1AC − λC−1IC)

= detC−1(A− λI)C = detC−1 det(A− λI) detC

= det(A− λI)

since detC−1 = 1
detC .

Thus, if A and B are similar, they have the same eigenvalues; also, A is
similar to the diagonal matrix of its eigenvalues, denoted diag(λ1, . . . , λn).

Spectrum of A may include k zeros, in which case the rank is equal to
n− k; i.e., A has k rows of zeros in its row echelon form.

HOMEWORK FOR DAY 9. Page 38, #6 part a, #7; Page 39, #8
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HOMEWORK ANSWERS. #6 a) A similar to diag(λ1, . . . , λn) implies that

there exists a nonsingular C such that A = C−1diag(λ1, . . . , λn)C. Thus

detA = det[C−1diag(λ1, . . . , λn)C]

= detC−1 det[diag(λ1, . . . , λn)] detC

= det[diag(λ1, . . . , λn)]

= λ1 · · ·λn

#8 a) Since A = IAI = I−1AI, A is similar to itself.
#8 b) Since A and B are similar, there is nonsingular P such that A =

P−1BP . Since B and C are similar, there is nonsingular Q such that B =
Q−1CQ. Hence,

A = P−1BP = P−1Q−1CQP = (QP )−1C(QP ).

Since there is nonsingular QP such that A = (QP )−1C(QP ), then A and C

are similar.
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10 Section 1.13, Orthogonal Matrices

Objective. Students will define and prove theorems involving properties of
the transpose of a matrix, symmetric matrices, and orthogonal matrices.

Rules of the Transpose (for matrices A,B and scalar c):

24) (A+B)T = AT + BT

25) (cA)T = cAT

26) (AT )T = A

27) (AB)T = BTAT

28) If A is nonsingular, (A−1)T =

(AT )−1

29) detA = detAT

A matrix A is orthogonal if AAT = I, or AT = A−1. So orthogonal implies

nonsingular. For example: A =

[

5
13

12
13

−12
13

5
13

]

is orthogonal.

Theorem 10.1. Let A be an n× n orthogonal matrix. Then each row vector

of A is a unit vector.

Proof. Since AAT = I, we have, by matrix multiplication, that

a2
i1 + · · · + a2

in = 1.

Thus, 〈ai1, . . . , ain〉 is a unit vector.

Theorem 10.2. Let A be an n × n orthogonal matrix. Then different rows
are orthogonal.

Proof. Since AAT = I, we have, by matrix multiplication, that

ai1aj1 + · · · + ainajn = 0.

Thus, 〈ai1, . . . , ain〉 · 〈aj1, . . . , ajn〉 = 0 and different row vectors are orthogo-
nal.

Orthogonal matrices whose determinants are 1 are also known as rotational

matrices. For example, the matrix
[

cosω sinω

− sinω cosω

]

is the standard rotational matrix: Let ω = arctan 12
5 and we get the orthog-

onal matrix above. To rotate points 90◦ we use the matrix

[

0 1

−1 0

]

.

HOMEWORK FOR DAY 10. Page 44, #1, #2, #5 part b, #8
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HOMEWORK ANSWERS. #2 a) Set 3a− 1 = 2a to get a = 1.

#2 b) a = b− a, b = 4 + a implies a = 4, b = 8.
#5 b)

[

cosω sinω

− sinω cosω

] [

cosω − sinω

sinω cosω

]

=

[

cos2 ω + sin2 ω 0

0 sin2 ω + cos2 ω

]

=

[

1 0
0 1

]

.

#8 a) AAT = I ⇒ det(AAT ) = det I ⇒ detA detAT = 1 ⇒ (detA)2 =
1 ⇒ detA = ±1, since detA = detAT .

#8 b) I = AAT = AIAT = ABBTAT = AB(AB)T .
#8 c) I = AAT ⇒ A−1 = AT ⇒ A−1A = ATA = I ⇒ AT (AT )T = I.

Next, I = AAT ⇒ I = (AAT )−1 = (AT )−1A−1 = (A−1)TA−1.
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11 Sections 1.12 and 1.13, Quadratic Forms

Objective. Students will determine coefficient matrices for quadratic forms
and use the eigenvalues to determine the new coordinates of rotation.

A quadratic form is any sum of quadratic terms; we consider the 2-

dimensional quadratic form −d = ax2 + 2bxy + cy2. The presence of the
xy term indicates that the conic section this represents has been rotated so

that the x and y axis are no longer the principal axes. We use a coefficient
matrix A and the variable vector v = 〈x, y〉 to write the equation as

−d = vTAv =
[

x y
]

[

a b
b c

] [

x
y

]

We then use a rotational matrix Q to denote the change in axes: v = Qv′.
Then

−d = vTAv = (Qv′)A(Qv′) = v′T (QTAQ)v′ =
[

x′ y′
]

(QTAQ)

[

x′

y′

]

This is great, but how do we know what rotation to use? The signal
for this is that the 2b′x′y′ must disappear; so we define a diagonal matrix

D =

[

λ1 0
0 λ2

]

so that QTAQ = D. So starting from A, we need to solve the

equation QTAQ = D for Q and D; but this is easy: the column vectors of Q

are the eigenvectors of A and the diagonal elements of D are the eigenvalues
of A! Moreover, the directions of the new axes are the eigenvectors!

Example 11.1. Determine the standard form for xy = 1.

The quadratic form is 1 = 0x2 +xy+0y2, so A =

[

0 1
2

1
2 0

]

. The eigenvalues

are λ = ±1
2, the eigenvectors are v = 〈1,±1〉. Hence,

[

x′ y′
]

D

[

x′

y′

]

=
[

x′ y′
]

[

1
2 0
0 −1

2

] [

x′

y′

]

=
1

2
x′2 − 1

2
y′2 = 1

or, x′2 − y′2 = 2 with x′-axis 〈1, 1〉 and y′-axis 〈1,−1〉. Finally we have the
actual rotation by computing Q. The column vectors must be unit vectors

DR. C. GARNER, RMSST, MULTIVARIABLE CALCULUS NOTES, 2006-2007 Page 29



Day 11

since detQ = 1. Hence, Q =

[

1√
2

1√
2

1√
2

− 1√
2

]

. These are sine and cosine values,

so taking arccos 1√
2

we have a rotation from the standard axis of 45◦.

Example 11.2. Determine the standard form for x2 + 4xy − 2y2 = 6.

We have A =

[

1 2
2 −2

]

; eigenvalues −3 and 2; and eigenvectors 〈1,−2〉 and

〈2, 1〉. Hence, the standard form is 2x′2 − 3y′2 = 6 with an angle of rotation

of arccos 2√
5
≈ 26.5◦.

Quadratic forms with three terms are done similarly; the matrix

A =





a11 a12 a13

a21 a22 a23

a31 a32 a33





corresponds to the form

a11x
2
1 + a22x

2
2 + a33x

2
3 + 2a12x1x2 + 2a13x1x3 + 2a23x2x3 = −c

HOMEWORK FOR DAY 11. Page 44, #3
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12 Section 1.14, Vectors in n-Dimensional
Space

Objective. Students will determine the linear independence of n vectors

and extend known results to n dimensions. Students will prove the Cauchy-
Schwartz and Triangle Inequalities.

Discuss “Euclidean space”; note properties on page 47. Read “Remarks”
on page 47 concerning linear independence: if matrix A consists of column

vectors and detA 6= 0, then the vectors are linearly independent. Numerous
properties of linear independence; page 48.

Discuss basis for a vector space and an orthogonal basis in particular. An
orthogonal basis of unit vectors is an orthonormal basis.

Theorem 12.1 (Cauchy-Schwartz Inequality). For any vectors u and v,

||u · v|| ≤ ||u||||v||.
Proof. Without loss of generality, assume v 6= 0 and u 6= kv for some real k.

Then u + tv 6= 0 for all real t. Thus, ||u + tv||2 > 0, so that

(u + tv)(u + tv) > 0 ⇒ ||u||2 + 2t(u · v) + t2||v||2 > 0.

Hence, 4(u ·v)2−4||u||2||v||2 < 0 since there can be no real zeros. Therefore,

||u · v|| < ||u||||v||.
If u = kv, then

||u · v|| = ||kv · v|| = ||k||||v||2 = ||kv||||v|| = ||u||||v||.

Theorem 12.2 (Triangle Inequality). For any vectors u and v,

||u + v||2 ≤ (||u|| + ||v||)2 .

Proof.

||u + v||2 = (u + v) · (u + v)

= ||u||2 + ||v||2 + 2u · v
= (||u|| + ||v||)2 + 2u · v − 2||u||||v||
≤ (||u|| + ||v||)2 .

HOMEWORK FOR DAY 12. Page 53, #1, #5 part a
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13 Section 1.16, n-Dimensional Linear Map-
pings

Objective. Students will understand the concept of a linear mapping and its

properties.

A function is the assignment to each object in a first set (called the do-

main) an object in the second set (called the codomain). The range is the set
of objects in the codomain that are actually used. A function is also called

a mapping. The function “maps” the domain into the codomain; when the
range is the same as the codomain, the function maps onto the range.

A mapping (or, function) T is a linear mapping if, there exists a matrix A
such that T (x) = Ax for every x in the domain. Notation: “T : V n → V m”
is read “T maps a vector from an n-dimensional vector space to a vector in

an m-dimensional vector space.”
For a mapping T : V n → V m, we are concerned with

• the range of T ,

• whether T maps V n onto V m,

• whether T is one-to-one, and

• the kernel of T—the set of all x for which T (x) = 0

Theorem 13.1. Let T : V n → V m be a linear mapping. Then T is one-to-one
if and only if the kernel of T consists of the zero vector alone.

If T (x) = 0 for every x, then T is the zero mapping. This is neither
one-to-one nor onto.

If T (x) = x for every x, then T is the identity mapping. This is one-to-one

and onto.
Examples 4 and 7, page 59.

HOMEWORK FOR DAY 13. Page 60, #1, #3, #8
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HOMEWORK ANSWERS. #1 a) T (1, 0) = (2, 3); T (0, 1) = (1, 5); T (2,−1) =

(3, 7); T (−1, 1) = (−1, 2). b) Ax = 0 implies 2x1+x2 = 0 and 3x1+5x2 = 0,
whose only solution is x1 = x2 = 0; hence, only 0 is in the kernel, so T is
one-to-one. c) Range is V 2 and T is onto.

#3 a) n = 3, m = 2. b) t〈0, 2,−1〉 for real t; not one-to-one c) V 2; onto
#8 a) n = m = 3 b) 0; one-to-one c) V 3; onto
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14 Section 2.2, Domains and Regions

Objective. Students will understand set-theoretic terminology as applied to
functions.

A set of points is any collection of points in the xy-plane whether finite or

infinite.
A neighborhood of a point (x0, y0) is a set of points inside a circle of radius

δ with center (x0, y0). Each point (x, y) in the neighborhood satisfies (x −
x0)

2 + (y − y0)
2 < δ2.

A set of points is open if every point of the set has a neighborhood lying
within the set. These are defined by strict inequalities.

A set of points is closed if the set includes the interior points and the

points lying on the boundary; i.e., set S is closed if the points in the plane
that are not in S form an open set.

A set is bounded if there exists a circle of large enough radius to enclose
the entire set.

An open set is a connected open set is any two points A and B can be
connected by “broken” line segments. Also known as a domain.

A boundary point of a set is a point whose every neighborhood consists of
points inside and outside the set.

An interior point of a set has a neighborhood that is entirely contained

within the set. —[[Thomas 11.9]]—
A region is a domain plus some, none, or all of its boundary points. A

domain and its boundary is called a closed region. A domain is also called
an open region.

Example 14.1. We clarify the above definitions with a few examples.

• the set xy < 1 is a domain;

• the set xy < 1 has boundary xy = 1;

• the set xy ≤ 1 is a closed region;

• the set xy ≤ 1 is not bounded;

• the point (2, 1
2) is a boundary point of xy < 1 and xy ≤ 1;

• the point (1, 1
2) is an interior point of xy < 1 and xy ≤ 1.
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15 Section 2.3, Functions and Level Curves

Objective. Students will sketch the level curves of a two-variable function.
Students will recognize equations of various quadric surfaces. Students will

determine the domain of a two-variable function.

—[[Thomas 10.3]]— Function z = f(x, y) is defined by z =
√

1 − x2 − y2. The domain is the closed set x2 + y2 ≤ 1. Note f(0, 0) = 1

and f(1
2
, 1

2
) =

√

1
2
.

Graph z = f(x, y) by sketching level curves : plot f(x, y) = c for choices
of c. —[[Thomas 11.4, 11.5, Larson 37]]—

Another graphing method is is to keep one variable fixed and find “traces”
in each coordinate plane. —[[Stewart 32, Larson 97]]—

Example 15.1. Find the family of level curves for z =
√

1 − x2 − y2.

Let c = 0 and graph the resulting curve y =
√

1 − x2. Choose c =
√

1
2

and graph y =
√

1
2 − x2. The level curves are all circles with radius less than

1 and centered at the origin.
Level curves are like topographic maps or isotherms. —[[Stewart 36]]—
Three-dimensional graphs. —[[Stewart 35, 38]]—

Example 15.2. Match the 3-D graphs with their level curves; match the 3-D
graphs with their equations.

—[[Stewart 40, 30]]—

Quadric Surfaces —[[Larson 87, 88]]—

Ellipsoid
x2

a2
+
y2

b2
+
z2

c2
= 1; a sphere if a = b = c. Simpler: x2 + y2 + z2 = k

Hyperboloid of One Sheet
x2

a2
+
y2

b2
− z2

c2
= 1; axis corresponds to negative

variable. Simpler: x2 + y2 = z2 + k

Hyperboloid of Two Sheets
x2

a2
−y

2

b2
−z

2

c2
= 1; axis corresponds to positive

variable. Simpler: x2 − k = y2 + z2
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Elliptic Cone
x2

a2
+
y2

b2
− z2

c2
= 0; axis corresponds to negative variable.

Simpler: x2 + y2 = z2

Elliptic Paraboloid z =
x2

a2
+
y2

b2
; axis corresponds to linear variable. Sim-

pler: z = x2 + y2

Hyperbolic Paraboloid z =
x2

a2
− y2

b2
; axis corresponds to linear variable.

Simpler: z = x2 − y2

Example 15.3. Find the domains of the following functions.

a) f(x, y) =

√

x2 + y2

x2 + 3x− 8

b) f(x, y) = −2 cos(2x) + y

c) f(x, y) = sin
√

1 − (x2 + y2)

d) f(x, y) = exp

(

x+ y

xy

)

HOMEWORK FOR DAY 15. Page 82, #2
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HOMEWORK ANSWERS. #2

a) Sketch y = 1
3(c− 3 + x); curves are lines with slope 1

3 .

b) Sketch y = ±
√
c− x2 − 1; curves are circles with radius δ ≥ 1.

c) Sketch y = arcsin c− x; curves are lines with slope −1.

d) Sketch y = ln z
x ; curves are hyperbolas with asymptotes at the x, y-axes.
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16 Section 2.4, Continuity, Limits, and Map-
pings

Objective. Students will define the limits of a two-variable function and

determine whether a two-variable function is continuous. Students will use
properties of limits to evaluate limits. Students will determine a metric of a

Euclidean space as it applies to linear mappings.

Definition of a Limit:

Let f(x, y) have domain D. If (x1, y1) ∈ D such that

0 < (x− x1)
2 + (y − y1)

2 < δ2

then there is ε such that
|f(x, y)− L| < ε.

The number L is the limit, denoted lim
x→x1
y→y1

f(x, y) = L.

If the limit at a point equals the function value at that point for every

point in the domain, then the function is continuous.

Example 16.1. Is z =
x− y

x+ y
continuous at (0, 0)?

Along the line y = 0, z = 1, so the limit is 1.

Along the line x = 0, z = −1, so the limit is −1.
Along the line y = x, z = 0, so the limit is 0.

Since the limit is different for each case, the function is discontinuous at
the origin.

Theorem 16.1. Let f(x, y) and g(x, y) be defined in the same domain D and
let

lim
x→x1
y→y1

f(x, y) = u, lim
x→x1
y→y1

g(x, y) = v.
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Then

lim
x→x1
y→y1

[f(x, y) + g(x, y)] = u+ v

lim
x→x1
y→y1

[f(x, y) · g(x, y)] = u · v

lim
x→x1
y→y1

f(x, y)

g(x, y)
=
u

v
(v 6= 0)

lim
x→x1
y→y1

F (f(x, y), g(x, y)) = F (u, v)

Also, if f and g are continuous, so are the functions f + g, f · g, f/g, and

F (f, g).

Example 16.2. Find lim
x→0
y→0

f(x, y) for each function.

a) f(x, y) =
xy

x+ y + 1

b) f(x, y) =
x2 + y2

x
, f(0, y) = 0

c) f(x, y) =
x2 − y2

x− y
, f(x, x) = 0

d) f(x, y) =
sin(x2 + y2)

x2 + y2

e) f(x, y) =
sin(x2 + y2)

x2 + y2
,

f(0, 0) = 0

f) f(x, y) = ex2+y2

g) f(x, y) =
x+ y − sin(x+ y)

(x+ y)3

h) f(x, y) =
xy

x3 − y3
, f(x, x) = 0

Example 16.3. Which of the functions in the previous example are continu-

ous at (0, 0)?

Interpretations of mappings from V n to V m:
a set of functions ym = fm(x1, . . . , xn), vector functions y = f(x), or points

in space with a defined distance, or metric function; i.e., A = (x1, . . . , xn) ∈
En and B = (y1, . . . , ym) ∈ Em with d(A,B) defined as the distance between

A and B. Then instead of vector notations, we can use a multivariable
function F such that F (A) = B. This gives us a new definition of continuity:

F is continuous at P0 ∈ En if for each ε > 0 there is a δ > 0 such that, for
P ∈ En, d(F (P ), F (P0)) < ε whenever d(P, P0) < δ.

The Euclidean metric has the following properties:
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i) d(A,B) ≥ 0

ii) d(A,B) = d(B,A)

iii) d(A,C) ≤ d(A,B) + d(B,C)

Vector spaces have a metric: ||a − b||.

Example 16.4. Prove that f : V n → R, f(x) = ||x|| is continuous.

HOMEWORK FOR DAY 16. Page 82, #4, #5, #6
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HOMEWORK ANSWERS. #4

a) 0

b) does not exist

c) 1

d) ∞

#5 a) Discontinuous at the origin since the limit is undefined along y = x,

1 along y = 0, and 0 along x = 0.
#5 b) Discontinuous at the origin since the limit is −∞.

#6

a) Defined on the domain of all (x, y)

b) Defined on the domain of the exterior of a circle of radius 1

c) Defined on the closed region of the circle of radius 1

d) Defined on open region of all space except the xy-plane
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17 Section 2.5, Partial Derivatives

Objective. Students will compute partial derivatives using basic differentia-
tion rules.

Let y be fixed, say, at y0. Then f(x, y0) depends only on x so we have

∂f

∂x
(x, y) = lim

∆x→0

f(x+ ∆x, y0) − f(x, y0)

∆x

as the partial derivative of f with respect to x. One can then evaluate this
derivative at the point (x0, y0).

For z = f(x, y), we have the notations ∂f
∂x , ∂z

∂x, and fx. —[[Larson 99]]—

Geometrically, ∂f
∂x

∣

∣

∣

(x0,y0)
is the slope of the tangent line to the surface f in

the plane y = y0. —[[Stewart 41]]—

The partial with respect to y is defined analogously. Sometimes we specify
which variables are kept constant:

(

∂w

∂x

)

yz

means fx(x, y, z) for the function w = f(x, y, z). —[[Thomas 11.13, 11.14,

11.15]]—
Any number of variables are easily defined:

∂f

∂xi
(x) = lim

∆xi→0

f(x1, . . . , xi + ∆x, . . . , xn) − f(x1, . . . , xi, . . . , xn)

∆x

Example 17.1. Find both ∂f
∂x

and ∂f
∂y

.

a) f(x, y) = 5x2y

b) f(x, y) = y cosx

c) f(x, y) = 3x2 + xy2

d) f(x, y) =
x2 + y2

x

e) z =
√

x2 + y2

f) x2 + y2 − z2 = 1

g) x2 + y + z + log z = 2

h) x log y
z

= 1

Example 17.2. Find both ∂f
∂x

and ∂f
∂y

at the indicated point.

i) f(x, y) = sinx cos y at
(

π
2
, π

2

)

.
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ii) f(x, y) = x arctan(xy) at (1, 0).

iii) f(x, y) = x2y + y2z + z2x at (1, 2, 3).

Example 17.3. Suppose u, v, x, y are related by u = x2 − y, v = x − 2y2.
Then (∂u

∂y
)x = −1 and (∂v

∂x
)y = 1

Example 17.4. Example 2, page 85

HOMEWORK FOR DAY 17. Page 89, #1, #3

DR. C. GARNER, RMSST, MULTIVARIABLE CALCULUS NOTES, 2006-2007 Page 43



Day 17

HOMEWORK ANSWERS. #1

a)
∂z

∂x
=

−2xy

(x2 + y2)2
and

∂z

∂y
=

x2 − y2

(x2 + y2)2

b)
∂z

∂x
= y2 cosxy and

∂z

∂y
= sinxy + xy cosxy

c)
∂z

∂x
=

2xz − 3x2 − 2xy

3z2 − x2
and

∂z

∂y
=

x2

x2 − 3z2

d)
∂z

∂x
=

ex+2y

2
√

ex+2y − y2
and

∂z

∂y
=

ex+2y − y
√

ex+2y − y2

e)
∂z

∂x
= 3x

√

x2 + y2 and
∂z

∂y
= 3y

√

x2 + y2

f)
∂z

∂x
=

1
√

1 − (x+ 2y)2
and

∂z

∂y
=

2
√

1 − (x+ 2y)2

g)
∂z

∂x
=

ex

ez − 1
and

∂z

∂y
=

2ey

ez − 1

#3 c)
∂x

∂u
= 1,

∂y

∂v
= −1

2
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18 Section 2.6, The Total Differential

Objective. Students will compute the total differential of a two-variable func-
tion. Students will understand and apply the Fundamental Lemma.

Last time, partial derivatives were found by changing x and y separately.

What is the effect of changing them together? We have —[[Larson 100]]—

∆z = f(x+ ∆x, y + ∆y) − f(x, y).

Example 18.1. If f(x, y) = x2 + xy, then

∆z = (x+ ∆x)2 + (x+ ∆x)(y + ∆y) − (x2 + xy)

= x2 + 2x∆x+ (∆x)2 + xy + x∆y + y∆x+ ∆x∆y − x2 − xy

= (2x+ y)∆x+ x∆y + (∆x)2 + ∆x∆y

In the example, we have

∆z = a∆x+ b∆y + ε1∆x+ ε2∆y (18.1)

where a and b are functions independent of ∆x and ∆y, and ε1 and ε2 are
functions such that

lim
∆x→0
∆y→0

ε1 = lim
∆x→0
∆y→0

ε2 = 0.

Thus, the function a∆x+ b∆y = dz is the total differential of z and approx-
imates ∆z for small values of ∆x and ∆y.

Theorem 18.1. If z = f(x, y) has a total differential at the point (x, y), then

f is continuous at (x, y) and a =
∂z

∂x
, b =

∂z

∂y
.

Proof. Let ∆y = 0. Then in Eq. 18.1 we have

∂z

∂x
= lim

∆x→0

∆z

∆x
= lim

∆x→0

∆x(a+ ε1)

∆x
= lim

∆x→0
(a+ ε1) = a.

Similarly, ∂z
∂y = b. Since ∆z → 0 as ∆x→ 0 and ∆y → 0, f is continuous at

(x, y).

Note: this theorem implies that the total differential, when existent, is
unique. Also, the existence of the partials at the point is not enough to
guarantee the existence of the total differential!
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Theorem 18.2 (Fundamental Lemma). If z = f(x, y) has continuous first

partial derivatives in domain D, then z has a differential

dz =
∂z

∂x
dx+

∂z

∂y
dy

at every point of D.

This is easily generalizable to three or more variables.

Example 18.2. If z = x2 − y2, then dz = 2x dx− 2y dy.

Example 18.3. If w = x sin y − y cos z + z tanx, then

dw = (sin y + z sec2 x) dx+ (x cos y − cos z) dy + (y sin z + tanx) dz.

Example 18.4. If z = f(x, y) = 3x2−xy, use ∆z to approximate the change

in z from (1, 2) to (1.01, 1.98).

Example 18.5. If w = f(x, y, z) = xyz, use ∆w to approximate the change

in w from (9, 6, 4) to (9.02, 5.97, 4.01).

The previous example could represent the approximate change in the vol-

ume of a box given slight distortion of its side lengths.

HOMEWORK FOR DAY 18. Page 89, #4; Page 90, #5
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HOMEWORK ANSWERS. #4

a) dz =
1

y
dx− x

y2
dy =

z

x
dx− z

y
dy

b) dz =
x

x2 + y2
dx+

y

x2 + y2
dy

c) dz =
y + 1

(1 − x− y)2
dx+

x+ 1

(1 − x− y)2
dy

d) dz = (x− 2y)4exy
[

(xy − 2y2 + 5) dx+ (x2 − 2xy − 10) dy
]

e) dz =
−y/x2

1 + y2/x2
dx+

1/x

1 + y2/x2
dy =

−y
x2 + y2

dx+
x

x2 + y2
dy

f) du = (x2 + y2 + z2)−3/2(−x dx− y dy− z dz) = −u3(x dx+ y dy+ z dz)

#5 a) First, we have

∆z = x2 + 2x∆x+ (∆x)2 + 2xy + 2x∆y + 2y∆x+ 2∆x∆y − x2 − 2xy

so that

∆z|(1,1) = 4∆x+ (∆x)2 + 2∆y + 2∆x∆y

Next, we have dz = (2x + 2y) dx + 2 dy so that dz|(1,1) = 4 dx + 2 dy. At

∆x = ∆y = dx = dy = 0.01, i.e., at x = y = 1.01, we have

∆z = 4(0.1) + (0.1)2 + 2(0.1) + 2(0.1)2 = 0.0603

and dz = 4(0.1) + 2(0.1) = 0.06.
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19 Section 2.7, The Jacobian

Objective. Students will use the Jacobian to approximate a multivariable
function at a point.

The differential of n variables of a function y = f(x1, · · · , xn) is dy =
fx1
dx1 + · · · + fx2

dxn, whose coefficients are the partials. We could have

system of m equations, each of n-variables on D ⊆ En → Em. To clarify this,
we use two equations, each of three variables. The system of differentials is

then
{

dy1 = ∂f1

∂x1
dx1 + ∂f1

∂x2
dx2 + ∂f1

∂x3
dx3

dy2 = ∂f2

∂x1
dx1 + ∂f2

∂x2
dx2 + ∂f2

∂x3
dx3

or,
[

dy1

dy2

]

=

[

∂f1

∂x1

∂f1

∂x2

∂f1

∂x3

∂f2

∂x1

∂f2

∂x2

∂f2

∂x3

]





dx1

dx2

dx3





or,

col〈dy1, dy2〉 =

(

∂fi

∂xj

)

col〈dx1, dx2, dx3〉

where i = 1, 2 and j = 1, 2, 3. The matrix
(

∂fi

∂xj

)

is called the Jacobian matrix

where entries are partials evaulated at a point.
The system is a mapping from D ⊆ E3 to E2. The matrix equation is

a linear mapping that approximates the mapping near a point; so we have

dy = fxdx where fx is the Jacobian. —[[Stewart 44]]—

Example 19.1. Find the Jacobians for a) y1 = 5x1 +2x2, y2 = 2x1 +3x2 and

b) y1 = 2x2
1 + x2

2, y2 = 3x1x2.

Example 19.2. Find the Jacobian for y1 = x2
1 + x2

2 − x2
3, y2 = x2

1 − x2
2 +

x2
3, y3 = −x2

1 + x2
2 + x2

3 at the point (2, 1, 1), and use it to approximate y at
(2.01, 1.03, 1.02). (Example 1, page 92)

If m = n, then the Jacobian is square, and we may find its determinant
J . This measures the ratio of the n-dimensional volumes.

Example 19.3. Find the Jacobian and its determinant for u = x2 − xy and
v = xy+y2 at the point (1, 1), and use it to approximate (u, v) at (1.01, 1.02).
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For 1 ≤ x, y ≤ 2, the square in the xy-plane is mapped to a curved

parallelogram in the uv-plane with vertices (0, 2), (2, 3), (0, 8), (−1, 6). The
Jacobian is

[

du
dv

]

=

[

(2x− y) dx −x dy
y dx (x+ 2y) dy

]

=

[

2x− y −x
y x+ 2y

][

dx
dy

]

At (x, y) = (1, 1), (u, v) = (0, 2) and the approximating linear mapping is
[

du
dv

]

=

[

1 −1
1 3

][

dx
dy

]

For dy = 0, we get du = dx and dv = dx, so that the slope du/dv = 1. For
dx = 0, we get du = −dy and dv = 3 dy, so that the slope du/dv = −1

3
. Thus,

for 0 ≤ dx, dy ≤ 1, these points correspond to a rectangle of area
∣

∣
1 −1
1 3

∣

∣ = 4.
Note also that the sides of the approximating rectangle emanating from (0, 2)

are tangent to the curved region.
Moreover, at (1.01, 1.02), we have dx = 0.01 and dy = 0.02. Hence,

[

du
dv

]

=

[

1 −1
1 3

][

0.01
0.02

]

=

[

−0.01
0.07

]

so that the approximation is (u, v) = (−0.01, 2.07); the exact value is (u, v) =

(−0.0101, 2.0706).

Example 19.4. Find the Jacobian for

y1 = x2
2 + x2

3 + x2
4

y2 = x2
1 + x2

3 + x2
4

y3 = x2
1 + x2

2 + x2
4

y4 = x2
1 + x2

2 + x2
3

at the point (1, 0, 0, 0), and use it to approximate y at (1, 0.1, 0.1, 0.1).









dy1

dy2

dy3

dy4









=









0 2x2 2x3 2x4

2x1 0 2x3 2x4

2x1 2x2 0 2x4

2x1 2x2 2x3 0

















dx1

dx2

dx3

dx4
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At (1, 0, 0, 0) the approximating linear mapping is









dy1

dy2

dy3

dy4









=









0 0 0 0
2 0 0 0
2 0 0 0

2 0 0 0

















dx1

dx2

dx3

dx4









Hence,








dy1

dy2

dy3

dy4









=









0 0 0 0

2 0 0 0
2 0 0 0

2 0 0 0

















0

0.1
0.1

0.1









=









0

0
0

0









and the approximation is unchanged from the function value (0, 1, 1, 1).

HOMEWORK FOR DAY 19. Page 95, #1 parts c through g, #2 parts a, b,

and c
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HOMEWORK ANSWERS. #1 d)





cos y −x sin y

sin y x cos y
2x 0





#1 e)
[

2xyz x2z x2y
]

#2 a) Jacobian is

[

2x1 2x2

x2 x1

]

; at the point (2, 1) and when dx1 = 0.04 and

dx2 = 0.01, we have
[

dy1

dy2

]

=

[

4 2
1 2

][

0.04
0.01

]

=

[

0.18
0.06

]

So f(2.04, 1.01) ≈ (5.18, 2.06).

#2 b) Jacobian is

[

x2 x1 −2x3

x2 + x3 x1 x1

]

; at the point (3, 2, 1) and when

dx1 = 0.01, dx2 = −0.01 and dx3 = 0.03, we have

[

dy1

dy2

]

=

[

2 3 −2
3 3 3

]





0.01
−0.01

0.03



 =

[

−0.07
0.09

]

So f(3.01, 1.99, 1.03) ≈ (4.93, 9.09).

#2 c) Jacobian is





ex cos y −ex sin y
ex sin y ex cos y

2ex 0



; at the point (0, π/2) and when

dx = 0.1 and dy = 0.03, we have




du
dv

dw



 =





0 −1
1 0

2 0





[

0.1
0.03

]

=





−0.03
0.1

0.2





So f(0.1, 1.6) ≈ (−0.03, 1.1, 2.2).
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20 Section 2.8, Differentials of Composite
Functions

Objective. Students will evaluate differentials of composite functions.

Theorem 20.1. If z = f(x, y) and x = g(t), y = h(t), then

dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt
. (20.1)

If z = f(x, y) and x = g(u, v), y = h(u, v), then

∂z

∂u
=
∂z

∂x

∂x

∂u
+
∂z

∂y

∂y

∂u
,

∂z

∂v
=
∂z

∂x

∂x

∂v
+
∂z

∂y

∂y

∂v
.

Proof. We prove Eq. 20.1. If x = g(t), y = h(t), then

∆x = g(t+ ∆t) − g(t), ∆y = h(t+ ∆t) − h(t)

so that ∆z = f(x+ ∆x, y + ∆y) − f(x, y), or, by the Fundamental Lemma,

∆z =
∂z

∂x
∆x+

∂z

∂x
∆y + ε1∆x+ ε2∆y.

Hence, upon division of each term by ∆t, and then letting ∆t → 0, we get
∆x
∆t → dx

dt ,
∆y
∆t →

dy
dt , ε1 → 0, ε2 → 0. Thus,

dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt
.

Note that multiplying each term by dt gives dz = ∂z
∂xdx + ∂z

∂ydy as in the
Fundamental Lemma.

This is easily generalizable to three or more variables; i.e.,

dw

dt
=
∂w

∂x

dx

dt
+
∂w

∂y

dy

dt
+
∂w

∂z

dz

dt
.

This brings us to the remarkable fact that, in order to find partial deriva-
tives, we need only compute differentials, pretending that all variables are

functions of some other variable. (See the Theorem on page 98.)
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Example 20.1. Find the first partials of z =
x2 − 1

y
.

We have dz =
2xy dx− (x2 − 1) dy

y2
; thus, ∂z

∂x = 2x
y and ∂z

∂y = 1−x2

y2 .

Example 20.2. Find the first partials of z2 = x2 − y2.

We have z dz = x dx + y dy, so that ∂z
∂x

= x
z
, ∂z

∂y
= y

z
, ∂x

∂z
= z

x
, ∂y

∂z
= y

z
,

∂y
∂x = −x

y , and ∂x
∂y = −y

x.

Example 20.3. Find the the value of dw/dt when t = 0 of w = xy+ z, where

x = cos t, y = sin t, z = t.

dw

dt
=
∂w

∂x

dx

dt
+
∂w

∂y

dy

dt
+
∂w

∂z

dz

dt

= (y)(− sin t) + (x)(cos t) + (1)(1)

= − sin2 t+ cos2 t+ 1

dw

dt

∣

∣

∣

∣

t=0

= 1 + cos 0 = 2

Example 20.4. Find dy/dx for y = logu v where u and v are functions of x.

dy

dx
=
∂y

∂u

du

dx
+
∂y

∂v

dv

dx

=
− log v

u log2 u

du

dx
+

1

v log u

dv

dx

HOMEWORK FOR DAY 20. Page 100, #2, #4, and #10
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HOMEWORK ANSWERS. #2

dy

dx
=
∂y

∂u

du

dx
+
∂y

∂v

dv

dx

= (vuv−1)
du

dx
+ (uv log u)

dv

dx

#4 We find differentials of the the equations in x, t and y, t to get

3x2 dx+ ex dx− 2t− 1 = 0, t2 dy + 2ty + 2ty dy + y2 − 1 + dy = 0

which implies dx = 1 and dy = 1 when t = x = y = 0. Hence,

dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt

= ex cos y
dx

dt
− ex sin y

dy

dt
dz

dt

∣

∣

∣

∣

t=0

= (e0 cos 0)(1)− (e0 sin 0)(1) = 1

#10 a) dz =
cos(x2y2 − 1)(2xy2 dx+ 2x2y dy)

sin(x2y2 − 1)
; thus, ∂z

∂x = 2xy2 cot(x2y2−

1) and ∂z
∂y = 2x2y cot(x2y2 − 1)

#10 c) 2z dz = 2x dx+ 4y dy; thus, ∂z
∂x = x

z and ∂z
∂y = 2y

z .
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21 Section 2.9, The General Chain Rule

Objective. Students will understand and apply the general chain rule to dif-
ferentiate multivariable composite functions.

Consider the system











y1 = f1(u1(x), . . . , up(x))
...

ym = fm(u1(x), . . . , up(x))

Then
∂yi

∂xj
=
∂yi

∂u1

∂u1

∂xj
+ · · · + ∂yi

∂up

∂up

∂xj

for i = 1, . . . , m, j = 1, . . . , n. We can express this using Jacobians as the
General Chain Rule:

(

∂yi

∂xj

)

=

(

∂yi

∂uk

)(

∂uk

∂xj

)

Example 21.1. Let y1 = u1u2−u1u3, y2 = u1u3 +u2
2 and let u1 = x1 cosx2 +

(x1 − x2)
2, u2 = x1 sinx2 + x1x2, u3 = x2

1 − x1x2 + x2
2. Find

(

∂yi

∂xj

)

, then

evaluate the partial derviatives when x1 = 1, x2 = 0.

We have

(

∂yi

∂xj

)

=

[

u2 − u3 u1 −u1

u3 2u2 u1

]





cosx2 + 2(x1 − x2) −x1 sin x2 − 2(x1 − x2)
sin x2 + x2 x1 cosx2 + x1

2x1 − x2 2x2 − x1





When x1 = 1, x2 = 0, then u1 = 2, u2 = 0, u3 = 1. Hence

(

∂(y1, y2)

∂(x1, x2)

)
∣

∣

∣

∣

(1,2)

=

[

−1 2 −2
1 0 2

]





3 −2
0 2

2 −1



 =

[

−7 8
7 −4

]

Note that the general chain rule can be expressed in terms of differentials:





dy1
...

dym



 =

(

∂yi

∂uk

)(

∂uk

∂xj

)





dx1
...

dxn
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or,

yx = yuux.

In the special case where y and u are linear, then yu = A and ux = B are
matrices so that yx = AB.

Example 21.2. Let y1 = u1u2 − 3u1, y2 = u2
2 + 2u1u2 + 2u1 − u2 and let u1 =

x1 cos 3x2, u2 = x1 sin x2. Find
(

∂yi

∂xj

)

, then evaluate the partial derviatives

when x1 = x2 = 0.

We have
(

∂yi

∂xj

)

=

[

u2 − 3 u1

2u2 + 2 2u2 + 2u1 − 1

] [

cos 3x2 −3x1 sin 3x2

sin 3x2 3x1 cos 3x2

]

When x1 = x2 = 0, then u1 = u2 = 0. Hence
(

∂(y1, y2)

∂(x1, x2)

)∣

∣

∣

∣

(0,0)

=

[

−3 0

2 −1

] [

1 0

0 0

]

=

[

−3 0

2 0

]

The determinant of this last matrix again corresponds to a volume (or, in

this case, area) ratio. Warning:
(

∂yi

∂xj

)

is a matrix, but ∂yi

∂xj
is a determinant!

Example 21.3. Find
∂(z, w)

∂(x, y)
for z =

√
u2 + v2, w = v(u2 + v2)−1/2 and

u = (x+ y + 1)−1, v = (2x− y + 1)−1 when x = y = 0.

∂(z, w)

∂(x, y)
=

∣

∣

∣

∣

∣

∣

∣

u√
u2 + v2

v√
u2 + v2

−uv
(u2 + v2)3/2

u2

(u2 + v2)3/2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−1

(x+ y + 1)2

−1

(x+ y + 1)2

−2

(2x− y + 1)2

1

(2x− y + 1)2

∣

∣

∣

∣

∣

∣

∣

∂(z, w)

∂(x, y)

∣

∣

∣

∣

(0,0)

=

∣

∣

∣

∣

∣

1√
2

1√
2

−1√
8

1√
8

∣

∣

∣

∣

∣

∣

∣

∣

∣

−1 −1

−2 1

∣

∣

∣

∣

=
1

2
(−3) = −3

2

Example 21.4. Find
∂(z, w)

∂(r, θ)
for z = x2 + xy + y2, w = y3 − 2y + x2 where

x and y are the polar coordinates x = r cos θ, y = r sin θ at the polar point
(1, π

2
).
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(r, θ) = (1, π
2 ) implies (x, y) = (0, 1). Thus,

∂(z, w)

∂(r, θ)
=

∣

∣

∣

∣

2x+ y x+ 2y
2x 3y2 − 2

∣

∣

∣

∣

∣

∣

∣

∣

cos θ −r sin θ
sin θ r cos θ

∣

∣

∣

∣

∂(z, w)

∂(r, θ)

∣

∣

∣

∣

(1,π
2
)

=

∣

∣

∣

∣

1 2
0 1

∣

∣

∣

∣

∣

∣

∣

∣

0 −1
1 0

∣

∣

∣

∣

= (1)(1) = 1

Read problem 6 on page 105.

HOMEWORK FOR DAY 21. Page 104, #1 parts a, b, and c; Page 105, #2
part a, #5
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HOMEWORK ANSWERS. #1 b)

(

∂(y1, y2)

∂(x1, x2, x3)

)

=

[

2u1 − 3 2u2 1

2u1 + 2 −2u2 −3

]





x2x
2
3 x1x

2
3 2x1x2x3

x2
2x3 2x1x2x3 x1x

2
2

2x1x2x3 x1x
2
3 x2

1x2





=

[

−1 2 1
4 −2 −3

]





1 1 2
1 2 1

2 1 1



 =

[

3 4 1
−4 −3 3

]

#1 c)

(

∂(y1, y2, y3)

∂(x1, x2)

)

=





eu2 u1e
u2

e−u2 −u1e
−u2

2u1 0





[

2x1 1

4x1 −1

]

=





e2 e2

e−2 e−2

2 0





[

2 1
4 −1

]

=





6e2 0

−2e−2 2e−2

4 2





#2 a)
(

∂(z, w)

∂(x, y)

)

=

∣

∣

∣

∣

3u2 + 6uv + 2u 3u2 − 2v2 − 2v

3u2 − 4u 3v2

∣

∣

∣

∣

∣

∣

∣

∣

cosxy − xy sinxy −x2 sin xy

sinxy + xy cosxy + 2x x2 cosxy − 2y

∣

∣

∣

∣

=

∣

∣

∣

∣

11 −2

−1 3

∣

∣

∣

∣

∣

∣

∣

∣

1 0

2 1

∣

∣

∣

∣

=

∣

∣

∣

∣

7 −2

5 3

∣

∣

∣

∣

= 31

#5

wx = wuux

=

[

2 11

7 5

] [

1 + 2x2 2x1 − 3

2 − 3x2 5 − 3x1

]

=

[

2 11

7 5

] [

3 1

−1 −1

]

=

[

−5 −9

16 2

]
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22 Section 2.10, Implicit Functions

Objective. Students will apply the Implicit Function Theorem to find deriva-
tives of multivariable implicitly-defined functions.

The differential of an implicit function F (x, y, z) = 0 where z = f(x, y) is
Fxdx+ Fydy + Fzdz = 0. Solving for dz, we have

dz = −Fx

Fz
dx− Fy

Fz
dy,

so
∂z

∂x
= −Fx

Fz

∂z

∂y
= −Fy

Fz
.

Example 22.1. Find
∂z

∂x
and

∂z

∂y
if x2 + y2 + z2 − 1 = 0.

Answer:
∂z

∂x
= −x

z and
∂z

∂y
= −y

z .

Example 22.2. Find ∂z
∂x and ∂z

∂y if x2z2 + xy2 − z3 + 4yz − 5 = 0.

Answer:
∂z

∂x
= − 2xz2+y2

2x2z−3z2+4y and ∂z
∂y = − 2xy+4z

2x2z−3z2+4y .

For two implicit functions F (x, y, z, w) = 0 and G(x, y, z, w) = 0 where

z = f(x, y), w = g(x, y) we have the two differential equations

Fxdx+ Fydy + Fzdz + Fwdw = 0

Gxdx+Gydy +Gzdz +Gwdw = 0

This is solved by elimination or Cramer’s Rule. By Cramer’s Rule we have

the formulas involving the Jacobians.

∂z

∂x
= −

∣

∣

∣

∣

Fx Fw

Gx Gw

∣

∣

∣

∣

∣

∣

∣

∣

Fz Fw

Gz Gw

∣

∣

∣

∣

∂z

∂y
= −

∣

∣

∣

∣

Fy Fw

Gy Gw

∣

∣

∣

∣

∣

∣

∣

∣

Fz Fw

Gz Gw

∣

∣

∣

∣

∂w

∂x
= −

∣

∣

∣

∣

Fz Fx

Gz Gx

∣

∣

∣

∣

∣

∣

∣

∣

Fz Fw

Gz Gw

∣

∣

∣

∣

∂w

∂y
= −

∣

∣

∣

∣

Fz Fy

Gz Gy

∣

∣

∣

∣

∣

∣

∣

∣

Fz Fw

Gz Gw

∣

∣

∣

∣
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Example 22.3. Find all four of the above partials for 2x2 + y2 + z2 − zw = 0

and x2 + y2 + 2z2 + zw − 8 = 0.

The differentials are

4x dx+ 2y dy + (2z − w) dz − z dw = 0

2x dx+ 2y dy + (4z + w) dz + z dw = 0

Thus, using the above formulas, we compute each Jacobian:

∂z

∂x
= −

∣

∣

∣

∣

4x −z
2x z

∣

∣

∣

∣

∣

∣

∣

∣

2z − w −z
4z + w z

∣

∣

∣

∣

= −x
z

∂z

∂y
= −

∣

∣

∣

∣

2y −z
2y z

∣

∣

∣

∣

∣

∣

∣

∣

2z − w −z
4z + w z

∣

∣

∣

∣

= −2y

3z

∂w

∂x
= −

∣

∣

∣

∣

2z − w 4x

4z + w 2x

∣

∣

∣

∣

∣

∣

∣

∣

2z − w −z
4z + w z

∣

∣

∣

∣

=
x(2z + w)

z2

∂w

∂y
= −

∣

∣

∣

∣

2z − w 2y
4z + w 2y

∣

∣

∣

∣

∣

∣

∣

∣

2z − w −z
4z + w z

∣

∣

∣

∣

=
2y(z + w)

3z2

Note format of these partials:

∂dependent1

∂independent
= −

∣

∣

∣

∣

independent dependent2

independent dependent2

∣

∣

∣

∣

∣

∣

∣

∣

dependent1 dependent2

dependent1 dependent2

∣

∣

∣

∣

We may have any number of dependent variables and equations, but the
system is only solvable if the number of dependent variables equals the num-
ber of equations!

DR. C. GARNER, RMSST, MULTIVARIABLE CALCULUS NOTES, 2006-2007 Page 60



Day 22

Also, we assume the equations define functions; they may not! (See bottom

of page 111.) If the determinant in the denominator is not 0, then the implicit
equations define functions as usual. This is contained in the following.

Theorem 22.1 (Implicit Function Theorem). Let Fi(xp, yq) be implicitly de-

fined functions each with p independent variables and q dependent variables.
Let each Fi be defined in a neighborhood of point P0 and have continuous

first-order partial derivatives in this neighborhood. Let each equation Fi = 0
be satistifed at P0 and let ∂Fi

∂yp
6= 0 at P0. Then in an appropriate neighbor-

hood of the x-coordinates of P0, there is a unique set of continuous functions
yi = fi(xp) such that these functions give the y-coordinates of P0 and that

Fi(xp, fi(xp)) = 0 in the neighborhood. Furthermore, the fi have continuous
partial derivatives.

(See first paragraph of Section 2.11)

Example 22.4. Find
∂u

∂x
,
∂u

∂y
at x = y = 0 for eu + xu − yv − 1 = 0 and

ev − xv + yu− 2 = 0.

Note that when x = y = 0, then u = 0, v = log 2. The differentials are

u dx− v dy + (eu + x) du− y dv = 0

−v dx+ u dy + y du+ (ev − x) dv = 0

Hence,

∂u

∂x
= −

∣

∣

∣

∣

u −y
−v ev − x

∣

∣

∣

∣

∣

∣

∣

∣

eu + x −y
y ev − x

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

(0,0)

= −

∣

∣

∣

∣

0 0
− log 2 2

∣

∣

∣

∣

∣

∣

∣

∣

1 0

0 2

∣

∣

∣

∣

= 0

∂u

∂y
= −

∣

∣

∣

∣

−v −y
u ev − x

∣

∣

∣

∣

∣

∣

∣

∣

eu + x −y
y ev − x

∣

∣

∣

∣

∂u

∂y

∣

∣

∣

∣

(0,0)

= −

∣

∣

∣

∣

− log 2 0

0 2

∣

∣

∣

∣

∣

∣

∣

∣

1 0
0 2

∣

∣

∣

∣

= log 2

Example 22.5. Find

(

∂x

∂y

)

z

,

(

∂y

∂x

)

u

,

(

∂z

∂u

)

x

,

(

∂y

∂z

)

x

for 2x+ y − 3z −
2u = 0 and x+ 2y + z + u = 0.
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The differentials are

2 dx+ dy − 3 dz − 2 du = 0

dx+ 2 dy + dz + du = 0

Hence,

(

∂x

∂y

)

z

= −

∂(F,G)

∂(y, u)

∂(F,G)

∂(x, u)

= −

∣

∣

∣

∣

1 −2
2 1

∣

∣

∣

∣

∣

∣

∣

∣

2 −2

1 1

∣

∣

∣

∣

= −5

4

(

∂y

∂x

)

u

= −

∂(F,G)

∂(x, z)

∂(F,G)

∂(y, z)

= −

∣

∣

∣

∣

2 −3

1 1

∣

∣

∣

∣

∣

∣

∣

∣

1 −3

2 1

∣

∣

∣

∣

= −5

7

(

∂z

∂u

)

x

= −

∂(F,G)

∂(u, y)

∂(F,G)

∂(z, y)

= −

∣

∣

∣

∣

−1 1

1 2

∣

∣

∣

∣

∣

∣

∣

∣

−3 1
1 2

∣

∣

∣

∣

= −5

7

(

∂y

∂z

)

x

= −

∂(F,G)

∂(z, u)

∂(F,G)

∂(y, u)

= −

∣

∣

∣

∣

−3 −2

1 1

∣

∣

∣

∣

∣

∣

∣

∣

1 −2
2 1

∣

∣

∣

∣

=
1

5

Example 22.6. Page 117, #4

Part a At the point, the differentials are

2 dx+ 2 dy + 4 dz − 6 du+ 4 dv = 0

2 dx− 2 dy + 4 dz + 6 du+ 8 dv = 0

Thus, adding equations, we get 4 dx+8 dz+12 dv = 0, or dv = −1
3
(dx+2 dz).

Substituting this into the second differential equation and multiplying each
term by 3 gives

6 dx− 6 dy + 12 dz + 18 du− 8 dx− 16 dz = 0

−dx− 3 dy − 2 dz + 9 du = 0

du = 1
9(dx+ 3 dy + 2 dz)
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Part b

∂u

∂x
= −

∣

∣

∣

∣

2 4
2 8

∣

∣

∣

∣

∣

∣

∣

∣

−6 4

6 8

∣

∣

∣

∣

=
1

9
,

∂u

∂y
= −

∣

∣

∣

∣

2 −6
−2 6

∣

∣

∣

∣

∣

∣

∣

∣

−6 4

6 8

∣

∣

∣

∣

= 0

c) We have dx = 0.1, dy = 0.2, dz = −0.2. Then du = 1
9
(0.1 + 3(0.2) −

2(0.2)) = 0.033 and dv = −1
3(0.1− 2(0.2)) = 0.1. Therefore, u = 3 + 0.033 =

3.033 and v = 2 + 0.1 = 2.1.

HOMEWORK FOR DAY 22. Page 116, #1, #3 parts a and c (Page 117, #7 is

extra credit)
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HOMEWORK ANSWERS. #1 a) The differentials are 4x dx+2y dy−2z dz = 0,

so
∂z

∂x
=

2x

z
and

∂z

∂y
=
y

z
.

#1 d) The differentials are zexz dx + zeyz dy + (zexz + yeyz + 1) dz = 0,

so that
∂z

∂x
=

zexz

zexz + yeyz + 1
and

∂z

∂y
=

zeyz

zexz + yeyz + 1
.

#3 a) The differentials are

2x dx− 2y dy + 2u du+ 4v dv = 0

2x dx+ 2y dy − 2u du− 2v dv = 0

Hence,

∂u

∂x
= −

∣

∣

∣

∣

2x 4v
2x −2v

∣

∣

∣

∣

∣

∣

∣

∣

2u 4v

−2u −2v

∣

∣

∣

∣

=
3x

u
,

∂u

∂y
= −

∣

∣

∣

∣

−2y 4v
2y −2v

∣

∣

∣

∣

∣

∣

∣

∣

2u 4v

−2u −2v

∣

∣

∣

∣

=
y

u
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23 Section 2.12, Inverse Functions

Objective. Students will find derivatives of the inverse of function by differ-
entiating implicitly. Students will interpret polar, cylindrical, and spherical

functions as various inverses of rectangular functions.

The functions x = f(u, v), y = g(u, v) constitute a mapping from Duv to

Dxy. Assume this mapping is one-to-one. Then we have the inverse mapping
u = ϕ(x, y), v = ψ(x, y). Solving x and y explicitly may be impossible, so to
find differentials, we use f(u, v) − x = 0, g(u, v) − y = 0 and apply implicit

differentiation.
Let F (x, y, u, v) = f(u, v)− x and G(x, y, u, v) = g(u, v)− y. Then

∂u

∂x
= −

∣

∣

∣

∣

−1 fv

0 gv

∣

∣

∣

∣

∣

∣

∣

∣

fu fv

gu gv

∣

∣

∣

∣

=
gv

∣

∣

∣

∣

fu fv

gu gv

∣

∣

∣

∣

.

Similarly,

∂u

∂y
=

fv
∣

∣

∣

∣

fu fv

gu gv

∣

∣

∣

∣

,
∂v

∂x
=

−gu
∣

∣

∣

∣

fu fv

gu gv

∣

∣

∣

∣

,
∂v

∂y
=

−fu
∣

∣

∣

∣

fu fv

gu gv

∣

∣

∣

∣

.

Since f and g are inverses with ϕ and ψ, their Jacobians are inverses as well;

i.e.,
∂(x, y)

∂(u, v)

∂(u, v)

∂(x, y)
= |I| = 1; so

∂(x, y)

∂(u, v)
=

1

∂(u, v)

∂(x, y)

.

Example 23.1. Find ∂r
∂x and ∂θ

∂x for the polar relation x = r cos θ, y = r sin θ.

Let F (x, y, r, θ) = r cos θ − x, G(x, y, r, θ) = r sin θ − y. Then

∂r

∂x
=

r cos θ
∣

∣

∣

∣

cos θ −r sin θ
sin θ r cos θ

∣

∣

∣

∣

=
r cos θ

r cos2 θ + r sin2 θ
= cos θ

∂θ

∂x
=

− sin θ
∣

∣

∣

∣

cos θ −r sin θ
sin θ r cos θ

∣

∣

∣

∣

=
− sin θ

r cos2 θ + r sin2 θ
=

− sin θ

r
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Other coordinate systems are: cylindrical (x = r cos θ, y = r sin θ, z = z)

and spherical (x = ρ sinφ cos θ, y = ρ sinφ sin θ, z = ρ cosφ, where θ is the
angle between x and r and where φ is the angle between ρ and z.)

HOMEWORK FOR DAY 23. Page 121, #1 parts a and b, #2, #3
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HOMEWORK ANSWERS. #1 a) This is easy. b) dr is easy; here is dθ:

dθ =
−y/x2

1 + y2/x2
dx+

1/x

1 + y2/x2
dy =

−y
x2 + y2

dx+
x

x2 + y2
dy

=
−r sin θ

r2
dx+

r cos θ

r2
dy =

− sin θ

r
dx+

cos θ

r
dy

#2 a) We solve the system u − 2v = x, 2u + v = y for u and v to get

u = 1
5(x + 2y) and v = 1

5(y − 2x). b)
∂(x, y)

∂(u, v)
=

∣

∣

∣

∣

1 −2

2 1

∣

∣

∣

∣

= 5. The inverse

Jacobian is then 1
5.

#3 a)
∂(x, y)

∂(u, v)
=

∣

∣

∣

∣

2u −2v

2v 2u

∣

∣

∣

∣

= 4u2 + 4v2. b)

(

∂u

∂x

)

y

=
2u

4u2 + 4v2
=

u

2u2 + 2v2
,

(

∂v

∂x

)

y

=
−v

2u2 + v2
.

DR. C. GARNER, RMSST, MULTIVARIABLE CALCULUS NOTES, 2006-2007 Page 67



Day 24

24 Section 2.13, Geometrical Applications

Objective. Students will find tangent lines to curves in space and tangent
planes to surfaces in space at a point. Students will define and use the gradient

of a vector.

We extend the two-dimensional vector-valued function doncept to three-
dimensions. If a curve has x = f(t), y = g(t), z = h(t), then this is the

same as the vector-valued function r = xi + yj + zk with velocity vector
v = r′(t) = x′i + y′j + z′k which is tangent to the curve and has magnitude
||v|| = ds/dt where s is the distance along the curve. The unit tangent vector

is T = v/||v||.
As long as the value t = t1 does not give v = 0, we have

dr = 〈dx, dy, dz〉
= 〈f ′(t)dt, g′(t)dt, h′(t)dt〉

and, interpreting dt as the change t− t1, this becomes

= 〈f ′(t)(t− t1), g
′(t)(t− t1), h

′(t)(t− t1)〉
But from the first equation to the last, the vector components must be equal;
hence we have a parametric equation of the tangent line:

x− x1 = f ′(t)(t− t1), y − y1 = g′(t)(t− t1), z − z1 = h′(t)(t− t1)

Example 24.1. Find tangent line to the curve x = sin t, y = cos t, z = sin2 t

at t = π/3.

When t = π/3, we have x =
√

3
2 , y = 1

2 , z = 3
4. Also, x′(π

3 ) = cos π
3 =

1
2, y

′(π
3 ) = − sin π

3 = −
√

3
2 , z

′(π
3 ) = sin 2π

3 =
√

3
2 . Hence, the tangent line is

x−
√

3
2 = 1

2

(

t− π
3

)

, y − 1
2 = −

√
3

2

(

t− π
3

)

, z − 3
4 =

√
3

2

(

t− π
3

)

.
If F (x, y, z) = 0 is a surface with curve x = f(t), y = g(t), z = h(t) in its

surface, then F (f(t), g(t), h(t)) = 0. Thus,

∂F

∂x
dx+

∂F

∂y
dy +

∂F

∂z
= 0 (24.1)

so that the tangent plane to the surface containing the tangent line to the

curve at t = t1 is

∂F

∂x

∣

∣

∣

∣

t1

(x− x1) +
∂F

∂y

∣

∣

∣

∣

t1

(y − y1) +
∂F

∂z

∣

∣

∣

∣

t1

(z − z1) = 0 (24.2)
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Note that this no longer depends on the curve. —[[Stewart 43]]—

Example 24.2. Find the tangent plane to the surface z = 2x2+y2 at (1, 1, 3).

Set equal to zero; then the partials are 4x, 2y, and −1; the plane is then
4(x− 1) + 2(y − 1) − (z − 3) = 0, or 4x+ 2y + z = 3.

Example 24.3. Find the tangent plane to the surface x2 + 2y2 + z = 2 at
(√

3
2 ,

1
2 ,

3
4

)

.

The partials are 2x, 4y, and 1; the plane is then
√

3
(

x−
√

3
2

)

+2
(

y − 1
2

)

+

z − 3
4 = 0, or

√
3x + 2y + z = 13

4 . Note that this surface contains the curve
from the previous example; so this is the plane containing the tangent line

from the previous example. —[[Stewart 45]]—

Example 24.4. Find the tangent plane to x2 +y2 +z2 = 14 at (1, 2, 3). What

is the normal vector to the plane?

The partials are 2x, 2y, and 2z; the plane is 2(x−1)+4(y−2)+6(z−3) = 0,
or 2x+ 4y + 6z = 28. The normal is the vector 2i + 4j + 6k.

Note that Eq. 24.1 implies that
〈

∂F
∂x
, ∂F

∂y
, ∂F

∂z

〉

is normal to the surface F .

This is called the gradient vector of F , denoted ∇F or grad F . Thus Eq.

24.2 can be written as ∇F · dr = 0. —[[Larson 103]]—
If the curve is defined by the intersection of two surfaces F and G, then the

intersection of the tangent planes ∇F ·dr = 0 and ∇G ·dr = 0 is the tangent
line to the curve. Note that since dr is perpendicular to both gradients, then

dr× (∇F ×∇G) = 0.

Example 24.5. Find the tangent line to the curve defined by the intersection

of F : 2x+ y − z = 6 and G : z + 2y + 2z = 7 at (3, 1, 1).

The tangent plane to F is

∇F · dr|t1 = 0

〈2, 1,−1〉 · 〈dx, dy, dz〉|(3,1,1) = 0

〈2, 1,−1〉 · 〈x− 3, y − 1, z − 1〉 = 0

2(x− 3) + y − 1 − (z − 1) = 0

2x+ y − z = 6.
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The tangent plane to G is

∇G · dr|t1 = 0

〈1, 2, 2〉 · 〈dx, dy, dz〉|(3,1,1) = 0

〈1, 2, 2〉 · 〈x− 3, y − 1, z − 1〉 = 0

x− 3 + 2(y − 1) + 2(z − 1) = 0

x+ 2y + 2z = 7.

The intersection of the two planes is then x = 3 + 4t, y = 1− 5t, z = 1 + 3t.

Example 24.6. Find the line tangent to the curve defined by the intersection

of F : x2 + y2 + z2 = 9 and G : z2 + y2 − 8z2 = 0 at (2, 2, 1).

The tangent plane to F is

∇F · dr|t1 = 0

〈2x, 2y, 2x〉 · 〈dx, dy, dz〉|(2,2,1) = 0

〈4, 4, 2〉 · 〈x− 2, y − 2, z − 1〉 = 0

4(x− 2) + 4(y − 2) + 2(z − 1) = 0

2x+ 2y + z = 9.

The tangent plane to G is

∇G · dr|t1 = 0

〈2x, 2y,−16x〉 · 〈dx, dy, dz〉|(2,2,1) = 0

〈4, 4,−16〉 · 〈x− 2, y − 2, z − 1〉 = 0

4(x− 2) + 4(y − 2) − 16(z − 1) = 0

x + y − 4z = 0.

The intersection of the two planes is then x = 2 + t, y = 2 − t, z = 1.

Example 24.7. Find the tangent plane and the normal line to z = x/y at

(2, 1, 2).
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The tangent plane is

∇f · dr|t1 = 0

〈1/y,−x/y2, 1〉 · 〈dx, dy, dz〉
∣

∣

(2,2,1)
= 0

〈1,−2, 1〉 · 〈x− 2, y − 1, z − 2〉 = 0

x− 2 − 2(y − 1) + (z − 2) = 0

x− 2y + z = 2.

The normal line is x = 2 + t, y = 1 − 2t, z = 2 + t.

HOMEWORK FOR DAY 24. Page 128, #8 parts a, b, and c; Page 129, #10
parts a and d, #11 part c, #15 part a
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HOMEWORK ANSWERS. #8 a) From Example 24.6, the tangent plane is

2x+ 2y + z = 9. The normal is x = 2 + 2t, y = 2 + 2t, z = 1 + t.
#8 b) The tangent plane is

∇f · dr|t1 = 0

〈2xex2+y2

, 2yex2+y2

,−2z〉 · 〈dx, dy, dz〉
∣

∣

∣

(0,0,1)
= 0

〈0, 0,−2〉 · 〈x, y, z − 1〉 = 0

−2(z − 1) = 0

z = 1.

The normal line is the z-axis.
#8 c) The tangent plane is

∇f · dr|t1 = 0

〈3x2 − y2,−2xy + z2, 2yz − 3z2〉 · 〈dx, dy, dz〉
∣

∣

(1,1,1)
= 0

〈2,−1,−1〉 · 〈x− 1, y − 1, z − 1〉 = 0

2(x− 1) − (y − 1) − (z − 1) = 0

2x− y − z = 0.

The normal line is x = 1 + 2t, y = 1 − t, z = 1 − t.
#10 a) The tangent plane is

∇f · dr|t1 = 0

〈2x, 2y, 1〉 · 〈dx, dy, dz〉|(1,1,2) = 0

〈2, 2,−1〉 · 〈x− 1, y − 1, z − 2〉 = 0

2(x− 1) + 2(y − 1) − (z − 2) = 0

2x+ 2y + z = 6.

The normal line is x = 1 + 2t, y = 1 + 2t, z = 2 + t.

#11 c) The tangent plane to F is

∇F · dr|t1 = 0

〈2x, 2y, 0〉 · 〈dx, dy, dz〉|(1,0,−1) = 0

〈2, 0, 0〉 · 〈x− 1, y, z + 1〉 = 0

2(x− 1) = 0

x = 1.
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The tangent plane to G is the plane itself, x+ y+ z = 0. The intersection of

the planes is x = 1, y = −1 + t, z = −t.
#15 a) The surface is a sphere centered at the origin of radius r =

√

x2 + y2 + z2; since ∇F = 〈2x, 2y, 2z〉, this represents a vector of length

||∇F || = 2
√

x2 + y2 + z2 = 2r in the same direction as the radius. Since all
radii are perpendicular to a sphere, ∇F must be normal to F .
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25 Section 2.14, The Directional Derivative

Objective. Students will compute the directional derivative of a function.

Consider the ratio of change in F to the distance moved in a given di-

rection, say v. This is called the directional derivative of F , denoted ∇vF .
—[[Larson 101]]—

A movement from (x, y, z) in direction v corresponds to increments pro-
portional to components of v; i.e., ∆x = hvx, ∆y = hvy, ∆z = hvz for scalar

h. Thus, the displacement is hv and its magnitude is h||v||. Hence,

∆F

h||v|| =
∂F

∂x

vx

||v|| +
∂F

∂y

vy

||v|| +
∂F

∂z

vz

||v|| + ε1 + ε2 + ε3

As h→ 0, ε1,2,3 → 0 and ∆F
h||v|| → ∇vF . So,

∇vF =
∂F

∂x

vx

||v|| +
∂F

∂y

vy

||v|| +
∂F

∂z

vz

||v||

But each vi/||v|| is a direction cosine of v; thus, we can rewrite this as

∇vF =
∂F

∂x
cosα +

∂F

∂y
cosβ +

∂F

∂z
cos γ

Each partial alone is the directional derivative in the respective axial direc-

tion.
If v = ∇F (i.e., if the direction is the gradient) then ∇vF attains its

maximum value with maximum given by

||∇vF || =

√

(

∂F

∂x

)2

+

(

∂F

∂y

)2

+

(

∂F

∂z

)2

The gradient points in the direction in which F increases most rapidly, and
its magnitude is the rate of increase in that direction.

If θ is the angle between v and ∇F , then ∇vF = ||∇f || cos θ. Hence, if v

is tangent to the surface, then ∇vF = 0.

(The gradient is the steepest ascent.) —[[Larson 102]]—

Example 25.1. Find the directional derivative of a) F = x2y at (
√

2, 1) and

b) G = exy at (
√

2, 0) in the directions of i + j and i− j.
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Part a ∇vF = (2xy)(cos π
4 )+(x2)(sin π

4 ) = xy
√

2+ x2√
2
; at the point, this

becomes 2 +
√

2. ∇vF = (2xy)(cos −π
4 ) + (x2)(sin −π

4 ) = xy
√

2 − x2√
2
; at the

point, this becomes 2 −
√

2.

Part b ∇vG = (yexy)( 1√
2
) + (xexy)( 1√

2
) = exy√

2
(y + x); at the point, this

becomes 1. ∇vG = (yexy)( 1√
2
) − (xexy)( 1√

2
) = exy√

2
(y − x); at the point, this

becomes −1.

Example 25.2. Find the directional derivative of F = xey + cosxy at the
point (2, 0) in the direction of v = 〈3,−4〉.

We have

∇vF |(2,0) =
∂F

∂x

vx

||v|| +
∂F

∂y

vy

||v||

∣

∣

∣

∣

(2,0)

= (ey − y sin xy)(3
5) + (xey − x sinxy)(−4

5)
∣

∣

(2,0)

= (1)(3
5) + (2)(−4

5) = −1

Example 25.3. Find the directional derivative of w = F (x, y, z) = z2exy2

at

the point (1, 0,
√

3) in the direction a) 〈−1,−1,−1〉; b) 〈0, 0,−1〉.

The partials are −y2z2exy2

, −2xyz2exy2

, and −2zexy2

. Thus the directional

derivatives are a) ∇vF = (0)(− 1√
3
) + (0)(− 1√

3
) − 2

√
3(− 1√

3
) = 2 and b)

∇vF = (0)(0) + (0)(0)− 2
√

3(−1) = 2
√

3.

Example 25.4. Find the directional derivative of F = 3x−5y+2z at (2, 2, 1)
in the direction of the outer normal of the surface x2 + y2 + z2 = 9.

From Homework 2.13, #8a, the normal line is x = 2 + 2t, y = 2 + 2t, z =

1 + t, so a vector in that direction is for any t > 0; choose t = 1 to get
v = 〈4, 4, 2〉. Thus, ||v|| = 6. Therefore,

∇vF = 3(2
3
) − 5(2

3
) + 2(1

3
) = −2

3

Example 25.5. Page 134, #1 part f

The two surfaces are an elliptical cone and a hyperboloid of one sheet;
the curve of intersection is an ellipse defined parametrically by v =
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〈5 cos t, 5 sin t, 5〉 with ||v|| = 5
√

2. Since the point is (3, 4, 5), we have t
defined by arccos 3

5
= arcsin 4

5
. Hence,

∇vF |(3,4,5) = 2x
5 cos t

5
√

2
+ 2y

5 sin t

5
√

2
− 2z

5

5
√

2

∣

∣

∣

∣

(3,4,5)

= (6)( 3
5
√

2
) + (8)( 4

5
√

2
) − (10)

1√
2

=
50

5
√

2
− 10√

2
= 0

HOMEWORK FOR DAY 25. Page 134, #1 parts a, b, c, and d
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HOMEWORK ANSWERS. #1

a) Direction vector is v = 〈2, 3,−3〉, so ||v|| =
√

22. The gradient is
∇F = 〈4x,−2y, 2z〉; at the point, ∇F = 〈4,−4, 6〉. Hence, ∇vF =
〈4,−4, 6〉 · 〈2, 3,−3〉/

√
22 = (8 − 12 − 18)/

√
22 = −

√
22.

b) Direction vector is v = 〈a, b, c〉, so ||v|| =
√
a2 + b2 + c2. The gradient

is ∇F = 〈2x, 2y, 0〉; at the point, ∇F = 〈0, 0, 0〉. Hence, ∇vF = 0; and

every vector v is perpendicular to ∇F at the origin.

c) Direction vector is v = 〈cos 60◦, sin 60◦〉 = 〈1
2 ,

√
3

2 〉; note this is a unit

vector. The gradient is ∇F = 〈ex cos y,−ex sin y〉; at the point, ∇F =

〈1, 0〉. Hence, ∇vF = 〈1, 0〉 · 〈1
2 ,

√
3

2 〉 = 1
2 .
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26 Section 2.15, Higher Order Partial Deriva-
tives

Objective. Students will compute all second partial derivatives. Students will

prove that both mixed partial derivatives of a function are equal. Students will
apply the Laplacian of a function to determine whether a given function is

harmonic.

We begin with the case where z = F (x, y) is a differentiable function on
domain D. First partials are themselves functions, so they can be further

differentiated on D.

Example 26.1. Find all second partial derivatives of z = F (x, y) = x3 cos y.

We have ∂z
∂x

= 3x2 cos y and ∂z
∂y

= −x2 sin y. Thus,

Fxx =
∂2z

∂x2
= 6x cos y Fyy =

∂2z

∂y2
= −z2 cos y

Fyx =
∂2z

∂x∂y
= −3x2 sin y Fxy =

∂2z

∂y∂x
= −3x2 sin y

It is not coincidence that the “mixed partials” are the same.

Theorem 26.1 (Clairaut’s Mixed Partial Derivative Theorem). Let F (x, y) be
continuous in D so that Fx, Fy, Fyx, Fxy are also continuous. Let (a, b) ∈ D.

Then Fyx(a, b) = Fxy(a, b).

Proof. Choose h 6= 0, k 6= 0 and δ > 0 such that (a + h, b + k) is in a
neighborhood of (a, b) of radius δ. Consider the following function.

ϕ(h, k) = [F (a+ h, b+ k) − F (a+ h, b)] − [F (a, b+ k) − F (a, b)]

Use the Mean Value Theorem in the variable a on the function G(a) =
F (a, b+ k)− F (a, b) on [a, a+ h]. We then have G(a+ h)−G(a) = hG′(α1)

where a < α1 < a+ h. In terms of ϕ and F , this implies

ϕ(h, k) = h [Fx(α1, b+ k) − Fx(α1, b)]

Now, apply the Mean Value Theorem again to the function H(b) = Fx(α1, b)
on [b, b+ k]. Thus,

ϕ(h, k) = hkFxy(α1, β1)
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where b < β1 < b+ k. Next, we rewrite ϕ as

ϕ(h, k) = [F (a+ h, b+ k) − F (a, b+ k)] − [F (a+ h, b) − F (a, b)]

and use the same procedure as before, but on the variable b. We obtain

ϕ(h, k) = hkFyx(α2, β2),

where a < α2 < a + h and b < β2 < b + k. Hence, Fxy(α1, β1) = Fyx(α2, β2).

Now let h → 0, k → 0. Then α1 → a, α2 → a, β1 → b, β2 → b, and
Fyx(a, b) = Fxy(a, b).

Example 26.2. Find all second order partials of z = F (x, y) = x2 + xy+ y2.
∂z
∂x = 2x+ y, ∂z

∂y = x+ 2y, ∂2z
∂x2 = 2, ∂2z

∂y2 = 2, ∂2z
∂x∂y = 1.

Example 26.3. Find all second order partials of z = F (x, y) = x tan y at the
point (3, π

4
).

∂z
∂x = tan y, ∂z

∂y = x sec2 y, ∂2z
∂x2 = sec2 y, ∂2z

∂y2 = 2x sec2 y tan y, ∂2z
∂x∂y = sec2 y.

At the point, these become: ∂z
∂x = 1, ∂z

∂y = 6, ∂2z
∂x2 = 2, ∂2z

∂y2 = 12, ∂2z
∂x∂y = 2.

Example 26.4. Find all second order partials of z = F (x, y) =
1

√

x2 + y2
.

We have ∂z
∂x = −x(x2 + y2)−3/2, ∂z

∂y = −y(x2 + y2)−3/2. Thus,

∂2z

∂x2
= −(x2 + y2)−3/2 + 3x2(x2 + y2)−5/2 =

2x2 − y2

(x2 + y2)5/2

∂2z

∂y2
= −(x2 + y2)−3/2 + 3y2(x2 + y2)−5/2 =

2y2 − x2

(x2 + y2)5/2

∂2z

∂x∂y
= 3xy(x2 + y2)−5/2 =

3xy

(x2 + y2)5/2

Example 26.5. Find all second order partials of z = arctan y
x.

We have ∂z
∂x = −y/(x2 + y2), ∂z

∂y = x/(x2 + y2). Thus,

∂2z

∂x2
=

2xy

(x2 + y2)2

∂2z

∂y2
=

−2xy

(x2 + y2)2

∂2z

∂x∂y
=

y2 − x2

(x2 + y2)2
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Third-order partials:
∂3F

∂x2
,
∂3F

∂y3
,

∂3F

∂x2∂y
,

∂3F

∂x∂y2
.

The Laplacian of F , denoted ∇2F , is the quantity ∇2F = ∂2F
∂x2 + ∂2F

∂y2 . If

w = F (x, y, z), then ∇2F = ∂2F
∂x2 + ∂2F

∂y2 + ∂2F
∂z2 . (These are called Laplace’s

equations.) Note that ∇2 = ∇ · ∇.

If ∇2F = 0, then F is called harmonic. Used in electromagnetic fields,
fluid dynamics, heat conduction.

Define ∇2(∇2F ) = ∇4F =
∂4F

∂x4
+ 2

∂4F

∂x2∂y2
+
∂4F

∂y4
. If ∇4F = 0 then F is

called biharmonic. Used in elasticity.

Example 26.6. Show that z = log
√

x2 + y2 is harmonic.

We have ∂z
∂x = x/(x2 + y2), ∂z

∂y = y/(x2 + y2), so the second partials are

∂2z

∂x2
=

y2 − x2

(x2 + y2)2
and

∂2z

∂y2
=

x2 − y2

(x2 + y2)2
. Since ∇2z = ∂2z

∂x2 + ∂2z
∂y2 = 0, z is

harmonic.

HOMEWORK FOR DAY 26. Page 143, #1 part c, #2 part b, #3 parts a and
b, #4 part b (#4 part a is extra credit)
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HOMEWORK ANSWERS. #1 c) We have ∂w
∂x = 2xex2−y2

so ∂2w
∂x∂y = −4xyex2−y2

.

Now we differentiate ∂2w
∂x∂y

with respect to x and again with y, to find

∂3w

∂x2∂y
= −4yex2−y2 − 8x2yex2−y2

= −4yex2−y2

(1 + 2x2)

∂3w

∂x∂y2
= −4xex2−y2

+ 8xy2ex2−y2

= −4xex2−y2

(1 − 2y2)

#2 b) ∂w
∂x

= x(x2 + y2 + z2)−1/2 so that
∂2w

∂x∂y
= −xy(x2 + y2 + z2)−3/2 and

∂3w

∂x∂y∂z
= 3xyz(x2 + y2 + z2)−5/2

#3 a) ∂w
∂x = ex cos y, ∂w

∂y = −ex sin y. Hence,

∂2w

∂x2
+
∂2w

∂y2
= ex cos y − ex cos y = 0.

#3 b) ∂w
∂x

= 3x2 − 3y2, ∂w
∂y

= −6xy. Hence,

∂2w

∂x2
+
∂2w

∂y2
= 6x− 6x = 0.

#4 a)

∇2(∇2F ) =
∂4F

∂x4
+ 2

∂4F

∂x2∂y2
+
∂4F

∂y4

=
∂2

∂x2

∂2F

∂x2
+

∂2

∂x2

∂2F

∂y2
+

∂2

∂y2

∂2F

∂x2
+

∂2

∂y2

∂2F

∂y2

=
∂2

∂x2

(

∂2F

∂x2
+
∂2F

∂y2

)

+
∂2

∂y2

(

∂2F

∂x2
+
∂2F

∂y2

)

In the parantheses, we have ∇2F ; but F is harmonic, so ∇2F = 0:

=
∂2

∂x2
(0) +

∂2

∂y2
(0) = 0

Therefore, F is biharmonic as well.
#4 b) For F = xex cos y, the required partial derivatives should be ∂4F

∂x4 =

(x+ 4)ex cos y, ∂4F
∂y4 = xex cos y, ∂4F

∂x2∂y2 = −(x+ 2)ex cos y.

For F = x2 − 3x2y2, the required partial derivatives should be ∂4F
∂x4 =

24, ∂4F
∂y4 = 0, ∂4F

∂x2∂y2 = −12.
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27 Section 2.19, Maxima and Minima of Several
Variable Functions

Objective. Students will find critical points of functions of several variables

and determine whether these points are maxima, minima, or saddle points.

Review of Second Derivative Test from single-variable calculus:

Theorem 27.1 (Derivative Test for Extrema). Let f ′(x0) = 0, f ′′(x0) = 0,
. . ., f (n−1)(x0) = 0, but f (n) 6= 0. Then f(x) has a relative maximum at x0

if n is even and f (n+1)(x0) < 0; f(x) has a relative minimum at x0 if n is
even and f (n+1)(x0) > 0; f(x) has neither a relative minimum nor relative

maximum at x0 but a horizontal inflection point at x0 if n is odd.

All multi-variable extrema are similar to single-variable. We consider two-
variable in depth. —[[Larson 105]]—

Defintion Points at which ∂z
∂x = 0 and ∂z

∂y = 0 are critical points of z.
Do we determine the nature of critical points by second partials? Yes, but

there are complications:

Example 27.1. If z = 1 + x2 − y2 then (0, 0) is a critical point, but it has a

minimum with respect to x when y = 0 and maximum with respect to y when
x = 0.

—[[Stewart 46]]—

Example 27.2. If z = 1 − x2 + 4xy − y2 then (0, 0) is a critical point, and
when y = 0 or x = 0, there is a maximum with respect to x and y; but when

y = x, there is a minimum at x = 0.

The critical points in the above examples do not give max/min of the

surface–these are saddle points. In order to account for these points, we use
the directional derivative in a direction α:

∇αz =
∂z

∂x
cosα+

∂z

∂y
sinα.

At a critical point we have ∇αz = 0. However, the type of critical point may

vary with the direction chosen, so we use the second directional derivative in
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the direction α:

∇α∇αz = ∇α

(

∂z

∂x
cosα +

∂z

∂y
sinα

)

=
∂2z

∂x2
cos2 α+ 2

∂2z

∂x∂y
sinα cosα +

∂2z

∂y2
sin2 α

We then determine whether ∇α∇αz is positive or negative for all α. Thus,

analysis of the extrema of z reduces to the analysis of the expression

A cos2 α + 2B sinα cosα + C sin2 α (27.1)

where A, B, and C are the partials above.

Theorem 27.2. If B2 − AC < 0 and A + C < 0, then Eq. 27.1 is negative
for all α; if B2 −AC < 0 and A+ C > 0, the Eq. 27.1 is positive for all α.

Proof. Denote Eq. 27.1 by P (α). Let B2 − AC < 0 and A+ C < 0.
Then P (±π/2) = C < 0, for if C ≥ 0, then A+ C < 0 implies A < 0, so

that AC ≤ 0; this contradicts the fact that B2 −AC < 0.

Also, P (0) = A < 0, for if A ≥ 0, then A+ C < 0 implies C < 0, so that
AC ≤ 0; this again contradicts B2 − AC < 0.

For α 6= ±π/2, we factor P (α) to get

P (α) = cos2 α(A+ 2B tanα+ C tan2 α).

Thus, P (α) is positive, negative, or zero according to whether the quadratic
in tanα is positive, negative, or zero. Since B2 −AC < 0, the quadratic has

no real roots; thus the quadratic is always positive or always negative. For
tanα = 0, A + 2B tanα + C tan2 α = A < 0. Hence, the quadratic, and

therefore P (α), is always negative.
The second statement is proved similarly.

Theorem 27.3. Let z = f(x, y) be defined and have continuous first and

second derivatives in a domain D. Let (x0, y0) be a point of D for which ∂z
∂x

and ∂z
∂y are zero. Let

A =
∂2z

∂x2
(x0, y0), B =

∂2z

∂x∂y
(x0, y0), C =

∂2z

∂y2
(x0, y0).

Then we have the following cases:
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B2 − AC < 0 and A+ C < 0, relative maximum at (x0, y0);

B2 − AC < 0 and A+ C > 0, relative minimum at (x0, y0);

B2 − AC > 0, saddle point at (x0, y0);

B2 − AC = 0, inconclusive.

Example 27.3. Find critical points and test for extrema on z = xy2+x2y−xy.

We have

∂z

∂x
= y2 + 2xy − y = 0

y(y + 2x− 1) = 0

y = 0, y = 1 − 2x

Substitute each into ∂z
∂y = 2xy+x2−x = 0 and solve. When y = 0, x2−x = 0

implies x = 0 or x = 1. When y = 1 − 2x, we have

2x(1− 2x) + x2 − x = 0

x(1 − 3x) = 0

x = 0, x =
1

3

When x = 1
3, y = 1

3 and when x = 0, y = 1. Thus we have four critical

pionts: (0, 0), (1, 0), (0, 1), and (1
3,

1
3). Now we test each; first we find second

partials:

A =
∂2z

∂x2
= 2y, B =

∂2z

∂x∂y
= 2y + 2x− 1, C =

∂2z

∂y2
= 2x.

At (0, 0), A = 0, B = −1, C = 0, so B2 − AC > 0 and we have a saddle

point;
At (1, 0), A = 0, B = 1, C = 2, so B2 − AC > 0 and we have a saddle

point;

At (0, 1), A = 2, B = 1, C = 0, so B2 − AC > 0 and we have a saddle
point;

At (1
3,

1
3), A = 2

3, B = 1
3, C = 2

3 , so B2 − AC < 0 and A+ C > 0 and we
have a relative minimum.
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Note:

B2 −AC = z2
xy − zxxzyy =

∣

∣

∣

∣

zxx zxy

zyx zyy

∣

∣

∣

∣

= |H|

where H is called the Hessian matrix of z.

Example 27.4. Find critical points and test for extrema on z = 2x3 − xy2 +
5x2 − y2.

We have

∂z

∂y
= −2xy + 2y = 0

−2y(x− 1) = 0

y = 0, x = 1

Substitute each into ∂z
∂x = 6x2 − y2 + 10x = 0 and solve. When y = 0,

6x2 + 10x = 0 implies that x = 0 or x = −5
3 . When x = 1, 16 − y2 = 0

implies that y = ±4. Thus we have four critical pionts: (0, 0), (1, 4), (1,−4),
and (−5

3, 0). Now we test each; first we find second partials:

A =
∂2z

∂x2
= 12x+ 10, B =

∂2z

∂x∂y
= −2y, C =

∂2z

∂y2
= −2x+ 2.

At (0, 0), A = 10, B = 0, C = 2, so |H| < 0 and A+ C > 0 and we have
a relative minimum;

At (1, 4), A = 22, B = −8, C = 0, so |H| > 0 and we have a saddle point;
At (1,−4), A = 22, B = −8, C = 0, so |H| > 0 and we have a saddle

point;

At (−5
3, 0), A = −10, B = 0, C = 16

3 , so |H| > 0 and we have a saddle
point.

Example 27.5. Use the above theory to find maxima and minima of y =
x3 − 3x.

HOMEWORK FOR DAY 27. Page 158, #4 parts b, c, d, and g; Page 159 #5
parts a, b, and e
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HOMEWORK ANSWERS. #4 b) ∂z
∂x = 2x = 0 implies x = 0. ∂z

∂y = 2y = 0

implies y = 0. The only critical point is (0, 0).

A =
∂2z

∂x2
= 2, B =

∂2z

∂x∂y
= 0, C =

∂2z

∂y2
= 2.

So B2 −AC < 0 and A+ C > 0, thus (0, 0) is a relative minimum.
#4 c) ∂z

∂x = 4x − y − 3 = 0 implies that y = 4x − 3; plugging this into
∂z
∂y = −x− 6y + 7 = 0 gives −25x + 25 = 0 so that x = 1; hence y = 1, and
(1, 1) is the only critical point.

A =
∂2z

∂x2
= 4, B =

∂2z

∂x∂y
= −1, C =

∂2z

∂y2
= −6.

So B2 −AC > 0, thus (1, 1) is a saddle point.
#4 d) ∂z

∂x
= −3x = 0 and ∂z

∂y
= −7y = 0 imply that (0, 0) is the only

critical point.

A =
∂2z

∂x2
= −3, B =

∂2z

∂x∂y
= 0, C =

∂2z

∂y2
= −7.

So B2 −AC < 0 and A+ C < 0, thus (0, 0) is a relative maximum.

#4 g) ∂z
∂x = 2x−2 sin y−2 cos y = 0 implies x = sin y+cos y. We substitute

into ∂z
∂y :

∂z

∂y
= −2x(cos y − sin y) = 0

−2(sin y + cos y)(cos y − sin y) = 0

sin2 y = cos2 y

y =
π

4
+ kπ,

3π

4
+ kπ, k ∈ Z

When y = π
4

+ kπ, x = ±
√

2 and when y = 3π
4

+ kπ, x = 0. Hence, we have

infinitely many critical points of the form
(

±
√

2, π
4

+ kπ
)

,
(

0, 3π
4

+ kπ
)

.

A =
∂2z

∂x2
= 2, B =

∂2z

∂x∂y
= −2 cos y+2 sin y, C =

∂2z

∂y2
= 2x(sin y+cos y).

At
(

±
√

2, π
4 + kπ

)

we have B2 − AC < 0 and A+ C > 0 so these points
are relative minima.
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At
(

0, 3π
4 + kπ

)

we have B2−AC > 0 so these points are all saddle points.

#5 a) ∂z
∂x = −2xe−x2−y2

= 0 and ∂z
∂y = −2ye−x2−y2

= 0 imply (0, 0) is the

only critical point.

A =
∂2z

∂x2
= −2e−x2−y2

+ 4x2e−x2−y2

= −2,

B =
∂2z

∂x∂y
= 4xye−x2−y2

= 0,

C =
∂2z

∂y2
= −2e−x2−y2

+ 4y2e−x2−y2

= −2.

So B2 −AC < 0 and A+ C < 0, thus (0, 0) is a relative maximum.
#5 b) ∂z

∂x
= 4x3 = 0 and ∂z

∂y
= −4y3 = 0 imply (0, 0) is the only critical

point.

A =
∂2z

∂x2
= 12x2 = 0, B =

∂2z

∂x∂y
= 0, C =

∂2z

∂y2
= −12y2 = 0.

So B2 −AC = 0 and this test fails! Only by graphing level curves do we find
that the lines y = x and y = −x intersect at the origin, thus confirming that

(0, 0) is a saddle point.
#5 e) ∂z

∂x = 2x− y = 0 and ∂z
∂y = −x+ 2y = 0 imply that (0, 0) is the only

critical point.

A =
∂2z

∂x2
= 2, B =

∂2z

∂x∂y
= −1, C =

∂2z

∂y2
= 2.

So B2 −AC < 0 and A+ C > 0, thus (0, 0) is a relative minimum.
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28 Section 2.20, Absolute Extrema; Extrema
with Constraints; The Lagrange Multiplier

Objective. Students will determine absolute extrema of functions. Students

will determine extrema of functions on a bounded set using a Lagrange mul-
tiplier.

From single-variable calculus, we have

Theorem 28.1. If f(x) is continuous on the closed interval a ≤ x ≤ b, then
f(x) has both an absolute maximum and absolute minimum on [a, b]; in other

words, f(x) is bounded on the interval [a, b].

Of course, there is an analogue for two-variable:

Theorem 28.2. Let D be a bounded domain of the xy-plane. Let f(x, y) be
defined and continuous in the closed region E formed of D plus its boundary.

Then f has an absolute maximum and an absolute minimum in E.

—[[Larson 104]]—

Example 28.1. Find the absolute maximum and minimum of z = x2+2y2−x
on the set x2 + y2 ≤ 1.

Since ∂z
∂x

= 2x−1, ∂z
∂y

= 4y, we have a critical point at (1
2
, 0); at this point,

z = −1
4. Now, on the boundary, we substitute the boundary equation into z

to get z = 2 − x − x2 = (2 + x)(1 − x) for −1 ≤ x ≤ 1. This function has
the critical points x = −1,−1

2
, 1. At these x-values, z = 2, 9

4
, 0. Hence the

absolute maximum is 9
4 at (−1

2, 0), and the absolute minimum is −1
4 at (1

2, 0).
(Since the minimum occurs inside the set, it is also a relative minimum.)

Consider maximizing w = f(x, y, z) where g(x, y, z) = h(x, y, z) = 0 are
given as constraints. In other words, we find (x, y, z) along the curve defined

by the intersection of g and h where f is at a maximum. At a maximum, the
derivative of f along this curve must be zero, but this is the component of ∇f
along the tangent; thus, ∇f is in the plane normal to the curve. Moreover,
∇g and ∇h are in the plane. Hence, ∇f,∇g,∇h are coplanar, so there are
constants λ1, λ2 such that

∇f + λ1∇g + λ2∇h = 0.

The constant λ is called a Lagrange multiplier.
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Example 28.2. Find the extreme values of z = x+2y on the circle x2+y2 = 1.

Since 1 + 2λx = 0, λ = − 1
2x; hence, 2 + 2λy = 0 becomes 2x = y. Since

x2 + y2 = 1, we have x2 + (2x)2 = 1 so that x = ±
√

1
5
; then y = ±2

√

1
5
.

The maximum is then z =
√

1
5 + 4

√

1
5 =

√
5 and the minimum is z =

−
√

1
5 − 4

√

1
5 = −

√
5.

Example 28.3. Find the point on the surface x2 + xy − z2 + 4 = 0 that is
closest to the origin.

Here, we minimize the distance function
√

x2 + y2 + z2, which is the same
as minimizing x2 + y2 + z2. Then, since 2z − 2zλ = 0 implies λ = 1, we use

this value in the equation 2x + λ(2x + y) = 0 to get that y = −4x. Using
this relation and the value of λ in the equation 2y + λx = 0, we find that
x = y = 0 and z = ±2. Hence, there are two points closest to the surface:

(0, 0, 2) and (0, 0,−2).

Example 28.4. Find the critical points of w = xyz if x2 + y2 + z2 = 1.

We have










yz + 2λx = 0

xz + 2λy = 0

xy + 2λz = 0

⇒











xyz + 2λx2 = 0

xyz + 2λy2 = 0

xyz + 2λz2 = 0

Adding equations, we have

3xyz + 2λ(x2 + y2 + z2) = 0

3xyz + 2λ = 0

λ = −3

2
(xyz)

Using this value of λ, we then have










yz − 3x2yz = 0

xz − 3xy2z = 0

xy − 3xyz2 = 0

⇒











yz(1 − 3x2) = 0

xz(1 − 3y2) = 0

xy(1 − 3z2) = 0

Hence, we have either two variables are 0 and one is ±1, or all are ±
√

1
3.

Therefore, we have 14 critical points.
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Example 28.5. Find the extrema of z = x+y given the constraint x2+y2 ≤ 1.

We use the constraint to simplify z to the single variable x: z = x +√
1 − x2. Then we use single-variable methods to get that z has critical

points x = ±
√

1
2 . Hence, the max is

√
2 and the min is −

√
2.

HOMEWORK FOR DAY 28. Page 159, #6 parts a, b, and c, #8 part b
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HOMEWORK ANSWERS. #6

a) We have 3+2λx = 0, so λ = − 3
2x. Thus, 4+2λy = 0 becomes 4− 3y

x = 0;

so y = 4
3x. Using this in the constraint gives x2 +

(

4
3x
)2

= 1, from which

we see that x = ±3
5 and y = ±4

5 . The maximum is z = 5 at the point
(3

5,
4
5) and the minimum is z = −5 at the point (−3

5,−4
5).

b) We have 2x+ 4λx3 = 0, so λ = − 1
2x2 . Thus

2y + 4λy3 = 0

2y − 2y3

x2
= 0

2y(x2 − y2) = 0

y = 0, x = ±y

According to the constraint equation, when y = 0, x = ±1; when x =

±y, x = y = ± 4

√

1
2. The maximum is

√
2 at the point

(

4

√

1
2 ,

4

√

1
2

)

and

the minimum is z = 1 at the points (±1, 0).

c) We have 2x+ 24 + 2λx = 0, so λ = −x+12
x . Thus

24 + 16y + 2λy = 0

24 + 16y − 2y(x+ 12)

x
= 0

12x+ 7xy − 12y = 0

y(7x− 12) = −12x

y =
12x

12 − 7x

According to the constraint equation,

x2 +

(

12x

12 − 7x

)2

= 25

x2 +
144x2

144 − 168x+ 49x2
= 25

49x4 − 168x2 − 937x2 + 4200x− 3600 = 0

(x− 3)(x− 4)(49x2 + 175 − 300) = 0
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Using the quadratic formula, we see the roots are

x = 3, 4,
−25 ± 5

√
73

14

But the constraint equation is in squares; so the negative of the roots also

give critical points. Hence, the maximum is 425 at the points (±3,±4),
and the minimum is −200 at the points (±4,∓3).

#8 b) Since ∂z
∂x = y and ∂z

∂y = x, we have the only critical point in the set

is (0, 0). On the boundary of x2 + y2 ≤ 1, we have z = x
√

1 − x2. Thus,

z′ =
√

1 − x2 − x2(1 − x2)−1/2 = 0, or x = ±
√

1
2, which gives y = ±

√

1
2.

Thus, there is an absolute maximum of 1
2

at
(

±
√

1
2
,±
√

1
2

)

and an absolute

minimum of −1
2 at the point

(

±
√

1
2,∓

√

1
2

)

.
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29 Section 2.21, Maxima and Minima of
Quadratic Forms on the Unit Sphere

Objective. Students will determine maxima and minima of quadratic forms

on the unit sphere. Students will determine whether a given quadratic form
is positive definite.

The most important application of Lagrange multipliers is in extrema of
quadratic forms on the unit sphere. If we proceed with f(x, y) = ax2 +

2bxy + cy2 as before, with the constraint g(x, y) = 1 − x2 − y2, we have
f + λg = ax2 + 2bxy + cy2 + λ(1 − x2 − y2), so that

2ax+ 2by − 2λx = 0

2bx+ 2cy − 2λy = 0

But these are equivalent to Ax = λx where x must meet the constraint; note

that ||x|| = 1. Therefore the Lagrange multiplier is actually the eigenvalue
of A, and x is an eigenvector of A.

Hence, the eigenvalues are the critical points of f on the unit sphere:

particularly, the abs max of f on the unit sphere is the largest eigenvalue;
the abs min of f is the smallest eigenvalue. Also, the corresponding unit

eigenvectors are the values that give the critical points.

Example 29.1. Find the extrema of x2 + 4xy − 2y2 on the unit circle.

The matrix is [ 1 2
2 −2 ] with eigenvalues −3 and 2 and unit eigenvectors

1√
5
〈1,−2〉 and 1√

5
〈2, 1〉. Hence, the max of f is 2 given by ( 2√

5
, 1√

5
), and the

min is −3 given by ( 1√
5
,− 2√

5
).

Moreover, f has a positive minimum on the unit sphere iff f is positive
for all x. Such a quadratic form is positive definite. Also, f has a negative

maximum on the unit sphere iff f is negative for all x. Such a quadratic form
is negative definite.

Hence, we have

Theorem 29.1. A quadratic form is positive definite iff all its eigenvalues are
positive.

HOMEWORK FOR DAY 29. Page 159, #9
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30 Sections 3.2 and 3.3, Vector Fields, Scalar
Fields, and Gradient Fields

Objective. Students will define and investigate the properties of vector fields,

scalar fields, and gradient fields.

A domain D in space is called a vector field if each point of D can be
assigned a vector v = v1i + v2j + v3k.

By convention, vectors in a vector field are drawn with the tail, not the
head, at the point of evaluation. —[[Stewart 54]]—

Example 30.1. Let v = xi+ yj+ zk. Then v is a vector pointing away from

the origin.

Example 30.2. Let v = −yi + xj. Then v characterizes a counterclockwise
rotation about the z-axis.

Example 30.3. Let

v =
1

[(x+ 1)2 + y2] [(x− 1)2 + y2]

[

2(x2 − y2 − 1)i + 4xyj
]

.

Then v is the electric force field from two oppositely charged wires, one at
(−1, 0) and the other at (1, 0).

—[[Stewart 55]]— A domain D in space is called a scalar field if each

point in D can be assigned a scalar (i.e., temperature at each point in a
room).

Example 30.4. Let f(x, y, z) = ex+y−z. Then there is a scalar at each point

in space.

Note that any vector field can give a scalar field (i.e., ||v||), and any scalar
field can give a vector field (i.e., ∇f). —[[Stewart 56, 57]]—

A scalar field that has a defined and differentiable function f(x, y, z) on
D so that ∇f exists at each point is called a gradient field.

The gradient symbol ∇ is not a function; it is a vector differential operator.
In other words, ∇ is defined to be the vector operation ∂

∂xi+
∂
∂yj+

∂
∂zk applied

to a function. This is a unary operation. Note that ∇ has the following
properties:

∇(f + g) = ∇f + ∇g, ∇(fg) = f∇g + g∇f,
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and if c is a constant,

∇(cf) = c∇f.
Since the gradient is an operator, we have

∇f =

(

∂

∂x
i +

∂

∂y
j +

∂

∂z
k

)

f

where the “multiplication” is actually differentiation.

Example 30.5. Sketch the gradient field of f(x, y, z) = ex+y−z.

∇f = ex+y−z(i + j − k), so the gradient field are all vectors in the same
direction of magnitude

√
3(ex+y−z).

HOMEWORK FOR DAY 30. Page 180, #1 part c, #2 parts a and b, #3 parts

a and b, and #5
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HOMEWORK ANSWERS. #1 c) The field resembles a counter-clockwise rota-

tion about a cylinder.
#2 a) The level curves are hyperbolas.
#2 b) The level surphaces are sferes!

#3 a) ∇f = yi + xj
#3 b) ∇f = 2xi + 2yj − 2zk

#5 Rewrite f as f = 1
2 log[(x − 1)2 + y2] − 1

2 log[(x + 1)2 + y2]. Then
differentiate and find common denominators, and we have

∇f =

(

x− 1

[(x− 1)2 + y2]
− x+ 1

[(x− 1)2 + y2]

)

i +

(

y

[(x− 1)2 + y2]
− y

[(x− 1)2 + y2]

)

j

=
2x2 − 2y2 − 2

[(x+ 1)2 + y2] [(x− 1)2 + y2]
i +

4xy

[(x+ 1)2 + y2] [(x− 1)2 + y2]
j
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31 Sections 3.4 and 3.5, The Divergence and
The Curl

Objective. Students will compute the divergence and the curl, and prove

identities involving both.

Given a vector field F ∈ D, each element of F is

v = v1(x, y, z)i + v2(x, y, z)j + v3(x, y, z)k.

If the partials are defined in D, we may arrange the matrix














∂v1

∂x

∂v1

∂y

∂v1

∂z
∂v2

∂x

∂v2

∂y

∂v2

∂z
∂v3

∂x

∂v3

∂y

∂v3

∂z















The sum of the diagonal elements (the trace) is the called the divergence of
v, denoted divv.

Example 31.1. Find div v if v = x3i + 2xyj− xyz2k.

We have div v = 3x2 + 2x− 2xyz.
Uses: div v is the measure of the rate of decrease of density at a point in

fluid dynamics. Also, the divergence of an electric force vector is 4πρ where
ρ is the charge density in the electric field.

Note that div is also an operator and in terms of operators, div v = ∇ ·v.

Theorem 31.1. The divergence operator has the following properties.

div(u + v) = div u + divv (31.1)

div(fv) = f div v + ∇f · v (31.2)

Proof. First, we prove Eq. 31.1.

div(u + v) =
∂(u1 + v1)

∂x
+
∂(u2 + v2)

∂y
+
∂(u3 + v3)

∂z

=
∂u1

∂x
+
∂v1

∂x
+
∂u2

∂y
+
∂v2

∂y
+
∂u3

∂z
+
∂v3

∂z

=
∂u1

∂x
+
∂u2

∂y
+
∂u3

∂z
+
∂v1

∂x
+
∂v2

∂y
+
∂v3

∂z

= div u + div v
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Next, we prove Eq. 31.2 with the aid of the product rule.

div(fv) =
∂(fv1)

∂x
+
∂(fv2)

∂y
+
∂(fv3)

∂z

=
∂f

∂x
v1 + f

∂v1

∂x
+
∂f

∂y
v2 + f

∂v2

∂y
+
∂f

∂z
v3 + f

∂v3

∂z

= f

(

∂v1

∂x
+
∂v2

∂y
+
∂v3

∂z

)

+
∂f

∂x
v1 +

∂f

∂y
v2 +

∂f

∂z
v3

= f div v + ∇f · v

For the other six elements in the matrix above, we define the curl of v by

curlv =

(

∂v3

∂y
− ∂v2

∂z

)

i +

(

∂v1

∂z
− ∂v3

∂x

)

j +

(

∂v2

∂x
− ∂v1

∂y

)

k

=

∣

∣

∣

∣

∣

∣

i j k
∂
∂x

∂
∂y

∂
∂z

v1 v2 v3

∣

∣

∣

∣

∣

∣

The curl measures angular motion of a fluid.

Example 31.2. Find curlv if v = x3i + 2xyj− xyz2k.

We have curlv = −xz2i + yz2j + 2yk.
Note that the curl is an operator and in terms of operators, we have

curlv = ∇× v.

Theorem 31.2. The curl operator has the following properties.

curl(u + v) = curlu + curlv (31.3)

curl(fv) = f curlv + ∇f × v (31.4)
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Proof. We prove Eq. 31.3 first.

curl(u + v) =

(

∂(u3 + v3)

∂y
− ∂(u2 + v2)

∂z

)

i +

(

∂(u1 + v1)

∂z
− ∂(u3 + v3)

∂x

)

j

+

(

∂(u2 + v2)

∂x
− ∂(u1 + v1)

∂y

)

k

=

(

∂u3

∂y
+
∂v3

∂y
− ∂u2

∂z
− ∂v2

∂z

)

i +

(

∂u1

∂z
+
∂v1

∂z
− ∂u3

∂x
− ∂v3

∂x

)

j

+

(

∂u2

∂x
+
∂v2

∂x
− ∂u1

∂y
− ∂v1

∂y

)

k

= curlu + curlv

Next, we prove Eq. 31.4 by using the product rule.

curl(fv) =

(

∂(fv3)

∂y
− ∂(fv2)

∂z

)

i +

(

∂(fv1)

∂z
− ∂(fv3)

∂x

)

j

+

(

∂(fv2)

∂x
− ∂(fv1)

∂y

)

k

=

(

∂f

∂y
v3 + f

∂v3

∂y
− ∂f

∂z
v2 − f

∂v2

∂z

)

i

+

(

∂f

∂z
v1 + f

∂v1

∂z
− ∂f

∂x
v3 − f

∂v3

∂x

)

j

+

(

∂f

∂x
v2 + f

∂v2

∂x
− ∂f

∂y
v1 − f

∂v1

∂y

)

k

= f

[(

∂v3

∂y
− ∂v2

∂z

)

i +

(

∂v1

∂z
− ∂v3

∂x

)

j +

(

∂v2

∂x
− ∂v1

∂y

)

k

]

+

(

∂f

∂y
v3 −

∂f

∂z
v2

)

i +

(

∂f

∂z
v1 −

∂f

∂x
v3

)

j +

(

∂f

∂x
v2 −

∂f

∂y
v1

)

k

= f curlv + ∇f × v

HOMEWORK FOR DAY 31. Page 185, #5 part a; Page 186, #12 parts a and

b
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HOMEWORK ANSWERS. #5 curlv =

∣

∣

∣

∣

∣

∣

i j k
∂
∂x

∂
∂y

∂
∂z

2xyx x2z x2y

∣

∣

∣

∣

∣

∣

= (x2 − x2)i+ (2xy−

2xy)j + (2xz − 2xz)k = 0. Functions that satisfy ∇f = v are of the form

f = x2yz + c where c is a constant.
#12 a) Since u is a unit vector, we may write the components of u in

terms of the direction angles:

(u · ∇)f = u1
∂f

∂x
+ u2

∂f

∂y
+ u3

∂f

∂z

= cosα
∂f

∂x
+ cosβ

∂f

∂x
+ cos γ

∂f

∂x
= ∇uf

#12 b) [(i− j) · ∇]f = ∂f
∂x − ∂f

∂y .
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32 Section 3.6, Combined Operations

Objective. Students will prove identities that combine the divergence, the
curl, and the gradient.

The previous theorems imply that the gradient, the divergence, and the
curl are linear operators ; i.e., they satisfy the basic property of linear trans-

formations: L(c1u + c2v) = c1L(u) + c2L(v).
We may combine these operations to create the following identities.

I) curl∇f = 0.

Proof. We have

curl∇f = ∇×∇f =

∣

∣

∣

∣

∣

∣

∣

i j k
∂
∂x

∂
∂y

∂
∂z

∂f
∂x

∂f
∂y

∂f
∂z

∣

∣

∣

∣

∣

∣

∣

in which each component consists of the difference of identical mixed

partials; hence, curl∇f = 0.

Note that if curlv = 0, then there is a function f such that v = ∇f (as

in homework problem #5 from last time).

II) div curlv = 0. (The proof is left for homework.) Note that if div v = 0,

then there is a vector u such that v = curlu.

III) div(u × v) = v · curlu − u · curlv.
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Proof. We have

div(u × v) = div

∣

∣

∣

∣

∣

∣

i j k

u1 u2 u3

v1 v2 v3

∣

∣

∣

∣

∣

∣

= div [(u2v3 − u3v2)i − (u1v3 − u3v1)j + (u1v2 − u2v1)k]

=
∂(u2v3 − u3v2)

∂x
− ∂(u1v3 − u3v1)

∂y
+
∂(u1v2 − u2v1)

∂z

=
∂u2

∂x
v3 + u2

∂v3

∂x
− ∂u3

∂x
v2 − u3

∂v2

∂x
− ∂u1

∂y
v3 − u1

∂v3

∂y

+
∂u3

∂y
v1 + u3

∂v1

∂y
+
∂u1

∂z
v2 + u1

∂v2

∂z
− ∂u2

∂z
v1 − u2

∂v1

∂z

=

(

∂u3

∂y
− ∂u2

∂z

)

v1 +

(

∂u1

∂z
− ∂u2

∂x

)

v2 +

(

∂u2

∂x
− ∂u1

∂y

)

v3

− u1

(

∂v3

∂y
− ∂v2

∂z

)

− u2

(

∂v1

∂z
− ∂v2

∂x

)

− u3

(

∂v2

∂x
− ∂v1

∂y

)

= v · curlu − u · curlv

IV) div∇f = ∇2f .

Proof.

div∇f = div

(

∂f

∂x
i +

∂f

∂y
j +

∂f

∂z
k

)

=
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2

= ∇2f

V) curl curlu = ∇(divu) −∇2u.

HOMEWORK FOR DAY 32. Page 185, #6; Page 186, #11 parts b, c, and d
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HOMEWORK ANSWERS. #6 This is easy.

#11 b) div(∇f × f∇g) = f∇g curl∇f − ∇f curl(f∇g) = (f∇g)(0) −
(∇f)(0) = 0.

#11 c) Since curl∇f = 0, we have curl(curlv + ∇f) = curl curlv +

curl∇f = curl curlv.
#11 d) Since div curlv = 0, we obtain div(curlv + ∇f) = div curlv +

div∇f = ∇2f .
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33 Section 4.1, The Definite Riemann Integral

Objective. Students will review single-variable integration.

Definition:

∫ b

a

f(x) dx = lim
h→0

n
∑

i=1

f(x∗i )∆ix where a = x0 < x1 < · · · <

xn = b; ∆ix = xi − xi−1; xi−1 ≤ x∗i ≤ xi; and, h = max∆ix.
This Riemann integral exsits provided f is bounded: |f(x)| ≤M for some

real M .
Antiderivatives (also called primitives) by substitution and parts:

Example 33.1. Find

∫

dx

1 +
√
x− 1

where x ≥ 1.

We use substitution twice. Let u =
√
x− 1; then dx = 2u du. Hence,

∫

dx

1 +
√
x− 1

=

∫

2u du

1 + u

Now, let w = 1 + u, so that 2u = 2w − 2 and du = dw.

=

∫

2w − 2

w
dw =

∫
(

2 − 2

w

)

dw

= 2w − logw + C = 2 (1 + u− log(1 + u)) + C

= 2
(

1 +
√
x− 1 − log

(

1 +
√
x− 1

))

+ C

Example 33.2. Evaluate

∫ 1

0

arctanx dx.

Consider the indefinite integral so we can find an antiderivative by parts.

Let u = arctanx, dv = dx so that du = 1
x2+1, v = x. Thus,

∫

arctanx dx = x arctanx−
∫

x

x2 + 1

= x arctanx− 1
2 log(x2 + 1) + C

Hence, the definite integral is
∫ 1

0

arctanx dx = x arctanx− 1
2 log(x2 + 1)

∣

∣

1

0

= arctan 1 − 1
2 log 2 − arctan 0 + 1

2 log 1

=
π

4
− log 2

2
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Theorem 33.1 (The Mean Value Theorem for Integrals). If f is continuous

on the interval a ≤ x ≤ b, then for some x∗ ∈ [a, b] we have

∫ b

a

f(x) dx =

f(x∗)(b − a). In other words, the average (mean) value of f on the interval

a ≤ x ≤ b is
1

b− a

∫ b

a

f(x) dx.

Theorem 33.2 (The Fundamental Theorem of Calculus). If f is continuous

on the interval a ≤ x ≤ b, with c ∈ [a, b], and F is an antiderivative of f ,
then

d

dx

∫ x

c

f(t) dt = f(x) (33.1)

and
∫ x

c

f(t) dt = F (x) − F (c) (33.2)

Proof. Proof of Eq. 33.1. [Apostol] Let h be a positive real number and let
x ∈ [a, b]. Let the integral in (33.1) be denoted by A(x). Then

∫ x+h

x

f(t) dt =

∫ x+h

c

f(t) dt−
∫ x

c

f(t) dt = A(x+ h) − A(x).

By the Mean Value Theorem for Integrals, we have A(x+h)−A(x) = hf(x∗)
for some x∗ ∈ [x, x+ h]. Hence,

A(x+ h) − A(x)

h
= f(x∗),

and, since x ≤ x∗ ≤ x+ h, we find that f(x∗) → f(x) as h→ 0. Thus, A′(x)
exists and is equal to f(x).

Proof of Eq. 33.2. Let A(x) denote the integral in 33.2. Since f is contin-

uous, Eq. 33.1 implies that A′(x) = f(x) over [a, b]; in other words, A is an
antiderivative of f . Since two antiderivatives can only differ by a constant, we
have A(x)−F (x) = k. When x = c, A(c) = 0 so that −F (c) = k. Therefore,

A(x) − F (x) = −F (c), or A(x) = F (x) − F (c).

Improper integrals are technically not Riemann integrals, but we can use
limits to evaluate convergent improper integrals; clearly, there are divergent
ones as well.
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Example 33.3. Evaluate

∫ ∞

1

dx

x
√

1 + x2
.

We find the antiderivative by trigonometric substitution. Let x = tan θ,

so that dx = sec2 θ. Then
∫

dx

x
√

1 + x2
=

∫

sec2 θ dθ

tan θ sec θ
=

∫

sec θ dθ

tan θ
=

∫

csc θ dθ = log (csc θ − cot θ)

Since x = tan θ, then csc θ =
√
x2 + 1/x, cot θ = 1/x. Thus,

∫

dx

x
√

1 + x2
= log

(√
x2 + 1 − 1

x

)

Now, we deal with the infinite limit:

lim
b→∞

log

(√
x2 + 1 − 1

x

)
∣

∣

∣

∣

∣

b

1

= lim
b→∞

[

log

(√
b2 + 1 − 1

b

)

− log(
√

2 − 1)

]

= log 1 − log(
√

2 − 1) = log(
√

2 + 1)

If the answer had been infinite, this would have been a divergent integral.
We also have many numerical techniques – Simpson’s Rule, Riemann Sums

– but sufficiently accurate of the basic methods is the following.

Theorem 33.3 (The Trapezoid Rule). If f is continuous over the interval
[a, b], then

∫ b

a f(x) dx can be approximated by

∆1x
f(a) + f(x1)

2
+ · · · + ∆nx

f(xn−1) − f(b)

2
,

where a = x0 < x1 < · · · < xn = b and ∆ix = xi − xi−1. If the subinterval
widths ∆ix are all equal, then the approximation becomes

b− a

2n
[f(a) + 2f(x1) + 2f(x2) + · · · + 2f(xn−1) + f(b)] .

Moreover, if |f ′′(x)| ≤ L on the interval, then the approximation differs from

the integral by at most
L(b− a)3

12n2
.

HOMEWORK FOR DAY 33. Page 219, #1 parts b, c, and d, #2 parts a and
d, #3 parts b and c; Page 220, #6 part a, and the following: Find the error

bound in using the trapezoid rule to approximate

∫ 2

−1

(x3 − 2x2 + 3) dx using

6 subintervals.
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HOMEWORK ANSWERS. #1 b)

∫

x dx

1 + x4
= 1

2

∫

2x dx

1 + (x2)2
= 1

2
arctanx2 + C

#1 c) We use partial fractions.
∫

dx

(x− 1)(x− 2)
=

∫
( −1

x− 1
+

1

x− 2

)

dx

= − log(x− 1) + log(x− 2) + C = log

(

2 − x

x− 1

)

+ C

#2 a) The integral represents a quarter-circle; it is equal to π/4.

#3 b) lim
b→∞

∫ b

0

e−x dx = lim
b→∞

(−e−x)
∣

∣

∣

b

0
= lim

b→∞
(−e−b + 1) = 1.

#3 c) We use parts to find the antiderivative, and apply L’Hopital’s Rule

to evaluate the limit.
∫ 1

0

log x dx = lim
b→0+

∫ 1

b

log x dx = lim
b→0+

(x log x− x)

∣

∣

∣

∣

1

b

= lim
b→0+

(−1 − b log b+ b) = lim
b→0+

(

−1 − log b

1/b
+ b

)

= lim
b→0+

(

−1 − 1/b

−1/b2
+ b

)

= lim
b→0+

(−1 + 2b) = −1

Trapezoid problem: Since f ′′(x) = 6x − 4 ≤ 8 on −1 ≤ x ≤ 2, we have
the error as

8(2 + 1)3

12(62)
=

1

2
.
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34 Section 4.2, Numerical Evaluation of Indefi-
nite Integrals; Elliptic Integrals

Objective. Students will tabulate numerical values of indefinite integrals in

order to approximate the antiderivatives. Students will investigate elliptic
integrals.

We know
∫

ex2

dx has no “closed-form” antiderivative. But thanks to the
Fundamental Theorem, we can easily approximate the integral by calculating

values of F (x) =
∫ x

0 e
t2 dt for 0 ≤ x ≤ 1 with ∆x = 0.1. This is done for

F (x) =
∫ x

0 e
sin t dt on page 222.

We may graph the points of F and use the regression capabilities of the
graphing calculator to gain an approximate antiderivative of esin t. An ap-
proximate cubic function for F on [0, 1] is F (x) ≈ 0.054x3+0.595x2+0.983x.

Note that F ′(0.2) ≈ 1.23; compare to esin 0.2 ≈ 1.22.
The most useful of these types of integrals – whose antiderivatives are

approximate – are the elliptic integrals, where 0 < k2 < 1, a 6= 0, a2 6= k2:

• 1st kind – y =

∫ x

0

dt
√

1 − k2 sin2 t

• 2nd kind – y =

∫ x

0

√

1 − k2 sin2 t dt

• 3rd kind – y =

∫ x

0

dt
√

1 − k2 sin2 t(1 + a2 sin2 t)

The second kind arises from the arc length of an ellipse, hence the name.
If f(x) is a rational function of the form x/P (x) where P (x) is a polyno-

mial of degree 3 or 4, then
∫

x/P (x) dx can be expressed as an elementary
function plus an elliptic integral. So indefinite integrals of all kinds are nu-

merically useful and can even be used to define functions. For example, let

y =

∫ x

0

dt√
1 − t2

. Then y = arcsinx, or x = sin y. Although more compli-

cated, all sine properties can be derived from this definition.

HOMEWORK FOR DAY 34. Page 223, #1 part b–and find a cubic approxi-
mation for the antiderivative; Page 224, #3 parts a and b, #4, (#8 is extra

credit)
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HOMEWORK ANSWERS. #1 b)

x
∫ x

0 e
−t2 dt

0 0
0.1 0.1

0.2 0.197
0.3 0.291

0.4 0.380
0.5 0.461

0.6 0.535
0.7 0.601

0.8 0.658
0.9 0.706
1 0.747

Cubic approximation is −0.13x3 − 0.156x2 + 1.033x for 0 ≤ x ≤ 1.

#3 a) This is easy.
#3 b) The integrand is continuous, so it’s area is continuous; the derivative

follows from the Fundamental Theorem.
#4 We have dx

dφ = −a sinφ, dy
dφ = b cosφ. Hence,

L =

∫ α

0

√

a2 sin2 φ+ b2 cos2 φ dφ =

∫ α

0

√

a2 sin2 φ+ b2 − b2 sin2 φ dφ

=

∫ α

0

√

(a2 − b2) sin2 φ+ b2 dφ = b

∫ α

0

1

b

√

b2 − (b2 − a2) sin2 φ dφ

= b

∫ α

0

√

1 − b2 − a2

b2
sin2 φ dφ

#8 a) This is also easy.
#8 b) erf(−x) =

∫ −x

0 e−t2 dt = −
∫ 0

−x e
−t2 dt; but the integrand is even, so

∫ 0

−x e
−t2 dt =

∫ x

0 e
−t2 dt. Hence,

erf(−x) = −
∫ 0

−x

e−t2 dt = −
∫ x

0

et2 dt = −erf(x).

#8 c)
∫∞

0 e−t dt converges to 1 and since e−t2 < e−t, we have
∫∞

0 e−t2 dt <
∫∞

0 e−t dt. Noting that e−t2 is even gives −1 < erf(x) < 1.
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35 Section 4.3 A, Double Integrals

Objective. Students will use Fubini’s Theorem to evaluate double integrals
by switching the order of integration.

The antiderivative of a two-variable function f(x, y) is a double integral
∫∫

R f(x, y) dx dy over a region R in the xy-plane. The definition is

∫∫

R

f(x, y) dx dy = lim
h→0

n
∑

i=1

f(x∗i , y
∗
i )∆iA

where ∆iA is the area of the ith rectangle in R, h is the maximum diagonal

of the n rectangles, and (x∗i , y
∗
i ) is an arbitrary point in the ith rectangle.

—[[Thomas 12.6]]—

The basic interpretation of a double integral is the volume beneath the
surface f over the region R (similar to the area beneath the curve f over the
interval I). —[[Stewart 48, Larson 107, Stewart 49]]—

We may interpret the region R as a ≤ x ≤ b, in which case g1(x) ≤ y ≤
g2(x); or as a ≤ y ≤ b, in which case h1(y) ≤ x ≤ h2(y). We assume that

g1, g2, h1, h2 are all continuous. —[[Larson 106]]—
Evaluation of a double integral is done by reducing it to an iterated integral :

∫ b

a

[

∫ g2

g1
f(x, y) dy

]

dx. The inner integral represents the area of a cross section

of the solid perpendicular to the x-axis. Hence,
∫ b

a [Area] dx = Volume. —

[[Thomas 12.8, 12.4, 12.5, Larson 108]]—

Theorem 35.1 (Fubini’s Theorem). If f(x, y) is continuous in a closed region
R described by a ≤ x ≤ b and g1(x) ≤ y ≤ g2(x), then

∫∫

R

f(x, y) dx dy =

∫ b

a

∫ g2(x)

g1(x)

f(x, y) dy dx

where the inner integral is a continuous function of x. If R is described by
a ≤ y ≤ b and h1(y) ≤ x ≤ h2(y), then

∫∫

R

f(x, y) dx dy =

∫ b

a

∫ h2(y)

h1(y)

f(x, y) dx dy

where the inner integral is a continuous function of y.
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—[[Stewart 49 again]]—

Example 35.1. Find
∫∫

R(16 − x2 − 2y2) dx dy if R is the region defined by
0 ≤ x, y ≤ 2.

∫∫

R

(16 − x2 − 2y2) dx dy =

∫ 2

0

∫ 2

0

(16 − x2 − 2y2) dx dy

=

∫ 2

0

16x− 1
3x

3 − 2xy2
∣

∣

2

0
dy

=

∫ 2

0

(88
3 − 4y2) dy = 88

3 y − 4
3y

3
∣

∣

2

0

= 176
3 − 32

3 = 48

—[[Thomas 12.1, 12.2]]—

Example 35.2. Find
∫∫

R 2xy dx dy where R is the region bounded by x2+y2 =

1 and x+ y = 1.

We do this two ways: with respect to y then x, and vice versa.

∫∫

R

2xy dy dx =

∫ 1

0

∫

√
1−x2

1−x

2xy dy dx =

∫ 1

0

xy2
∣

∣

√
1−x2

1−x
dx

=

∫ 1

0

[x(1 − x2) − x(1 − x)] dx =

∫ 1

0

(x2 − x3) dx

= 1
3x

3 − 1
4x

4
∣

∣

1

0
= 1

12

Equivalently,

∫∫

R

2xy dx dy =

∫ 1

0

∫

√
1−y2

1−y

2xy dx dy =

∫ 1

0

x2y
∣

∣

√
1−y2

1−y
dy

=

∫ 1

0

[y(1 − y2) − y(1 − y)] dy =

∫ 1

0

(y2 − y3) dy

= 1
3y

3 − 1
4y

4
∣

∣

1

0
= 1

12

Example 35.3. Find
∫∫

R f(x, y) dx dy if R is the region defined by 0 ≤ x ≤
1, 0 ≤ y ≤

√
1 − x2 and f(x, y) = xy.
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∫∫

R

xy dx dy =

∫ 1

0

∫

√
1−x2

0

xy dy dx =

∫ 1

0

1
2xy

2
∣

∣

√
1−x2

0
dx

=

∫ 1

0

1
2
x(1 − x2) dx = 1

2

∫ 1

0

(x− x3) dx

= 1
2

(

1
2x

2 − 1
4x

4
)
∣

∣

1

0
= 1

2

(

1
2 − 1

4

)

= 1
8

Example 35.4. Find
∫∫

R(x+ 2y) dx dy where R is the triangle with vertices

(2, 1), (4, 1), and (2, 2).

We sketch the triangular region and find that 2 ≤ x ≤ 4, 1 ≤ y ≤ 3− 1
2x.

Thus,

∫∫

R

(x+ 2y) dx dy =

∫ 4

2

∫ 3− 1

2
x

1

(x+ 2y) dy dx

=

∫ 4

2

(xy + y2)
∣

∣

3− 1

2
x

1
dx

=

∫ 4

2

(

3x− 1
2
x2 − 9 − 3x+ 1

4
x4 − x− 1

)

dx

= − 1
12x

3 − 1
2x

2 + 8x
∣

∣

4

2
= 16

3

Example 35.5. Find the volume between the surface z = x3 cos y and the

region 1 ≤ x ≤ 2, π
4 ≤ y ≤ π.

∫ 2

1

∫ π

π/4

x3 cos y dy dx =

∫ 2

1

x3 sin y
∣

∣

π

π/4
dx =

∫ 2

1

−
√

2
2 x

3 dx

= −
√

2
8 x

4
∣

∣

∣

2

1
= −2

√
2 +

√
2

8 = −15
8

√
2

Example 35.6. Find the volume above the xy-plane between the cylinder x2+
y2 = 9 and the plane x+ y + z = 5.
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∫∫

R

(5 − x− y) dy dx =

∫ 3

−3

∫

√
9−x2

−
√

9−x2

(5 − x− y) dy dx

=

∫ 3

−3

(5y − xy − 1
2y

2)
∣

∣

√
9−x2

−
√

9−x2 dx

=

∫ 3

−3

(

10
√

9 − x2 − 2x
√

9 − x2
)

dx

= 10(9π
2 ) = 45π

HOMEWORK FOR DAY 35. Page 234, #1 part a, #2
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HOMEWORK ANSWERS. #1 a) Sketch the region to find that 0 ≤ x ≤ 1, 0 ≤
y ≤ x. Thus,
∫ 1

0

∫ x

0

(x2 + y2) dx dy =

∫ 1

0

(x2y + 1
3y

3)
∣

∣

x

0
dx =

∫ 1

0

4
3x

3 dx = 1
3x

4
∣

∣

1

0
= 1

3

#2

a)
∫ 1

0

∫ π/2

0

ex cos y dy dx =

∫ 1

0

ex sin y|π/2
0 dx =

∫ 1

0

ex dx = e− 1

b)
∫ 1

0

∫ 2

0

x2e−x−ydy dx =

∫ 1

0

−x2e−x−y
∣

∣

2

0
dx

=

∫ 1

0

(

−x2e−x−2 + x2e−x
)

dx

= (1 − e−2)

∫ 1

0

x2e−x dx

We must use parts twice to find the antiderivative. We get

= (1 − e−2)(−e−x)(x2 + 2x+ 2)
∣

∣

1

0

= (1 − e−2)(−5e−1 + 2)

c)
∫ 1

0

∫ x+2

x+1

x2y dy dx =

∫ 1

0

1
2x

2y2
∣

∣

x+2

x+1
dx

=

∫ 1

0

[

1
2
x2(x2 + 4x+ 4) − 1

2
x2(x2 + 2x+ 1)

]

dx

=

∫ 1

0

(x3 + 3
2x

2) dx = 1
4x

4 + 1
2x

3
∣

∣

1

0
= 3

4

d) The condition x2 − y2 ≥ 0 implies −x ≤ y ≤ x. Thus, we can evaluate
by using a trigonometric substitution: y = x sin θ, so that dy = x cos θ.

∫ 1

0

∫ x

−x

√

x2 − y2 dy dx =

∫ 1

0

x2

2

[

arcsin
y

x
+
y

x

√

x2 − y2
]

∣

∣

∣

∣

x

−x

dx

=

∫ 1

0

x2

2
[π] dx =

π

2

(

x3

3

)
∣

∣

∣

∣

1

0

=
π

6
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36 Section 4.3 B, Applications of Double Inte-
grals

Objective. Students will investigate the properties of double integrals, includ-

ing the Mean Value Theorem for Double Integrals. Students will apply double
integrals to real-world situations, including mass, volume, and moments of

inertia.

First, we examine how to represent a given region R in terms of x or y;

i.e., how to change the order of integration.

Example 36.1. Change the order of integration of
∫ 2

0

∫ 2x

x2 (4x+ 2) dy dx.

Sketch the region R which consists of the region between y = 2x and
y = x2 from x = 0 to x = 2. Then it is obvious that 0 ≤ y ≤ 4 and

y/2 ≤ x ≤ √
y. Hence, the other order is

∫ 4

0

∫

√
y

y/2(4x+ 2) dx dy.

Example 36.2. Change the order of integration of
∫ 1

0

∫

√
1−y2

−
√

1−y2
3y dx dy.

The region is a semicircle on the half plane y ≥ 0. Hence, this is equal to
∫ 1

−1

∫

√
1−x2

0 3y dy dx.

Example 36.3. Evaluate

∫ π

0

∫ π

x

sin y

y
dy dx.

As given, we cannot integrate, since the integrand in y has no closed-form
antiderivative. So we must change the order of integration: the region R is a

triangle with vertices at the origin, (0, π), and (π, π). Hence we have

∫ π

0

∫ y

0

sin y

y
dx dy =

∫ π

0

x sin y

y

∣

∣

∣

∣

y

0

dy

=

∫ π

0

sin y dy = − cos y|π0 = 2

Example 36.4. Evaluate

∫ e

1

∫ log x

0

y dy dx.
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The region is in the first quadrant bounded by y = log x and x = e. Thus,

∫ 1

0

∫ e

y

y dx dy =

∫ 1

0

xy|ey dy

=

∫ 1

0

(ey − y2) dy = 1
2ey

2 − 1
3y

3
∣

∣

1

0

= 1
2e− 1

3 = 1
6(3e− 2)

It is worthwhile to point out that the basic properties of single integrals
hold for double integrals: sum of integrals, multiplication by a constant, etc.

We also have that if R can be split into two disjoint regions R1 and R2,
overlapping only at boundary points, then

∫∫

R

f dx dy =

∫∫

R1

f dx dy +

∫∫

R2

f dx dy. (36.1)

We also consider the following inequalities. If A is the area of R and N1 ≤
f ≤ N2 for points in R, we have

N1A ≤
∫∫

R

f dx dy ≤ N2A. (36.2)

Let N = max{|N1|, |N2|}. Then,
∣

∣

∣

∣

∣

∣

∫∫

R

f dx dy

∣

∣

∣

∣

∣

∣

≤
∫∫

R

|f | dx dy ≤ NA. (36.3)

Theorem 36.1 (The Mean Value Theorem for Double Integrals). If f is

continuous on the region R of area A, then for some (x∗, y∗) ∈ R we have
∫∫

R f(x, y) dx dy = f(x∗, y∗)A. In other words, the average (mean) value of

f over the region R is 1
A

∫∫

R f(x, y) dx dy.

Applications We list 5 applications of double integrals.

I) Volume If f(x, y) is the equation of a surface, then V =
∫∫

R f dx dy is
the volume between the surface and the xy-plane.

II) Area For f(x, y) = 1, we have A =
∫∫

R dx dy as the area of R.
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III) Mass If f(x, y) is the equation of the density of a surface (in mass per

unit area), then M =
∫∫

R f dx dy is the mass of R.

IV) Center of Mass If f is density, then the center of mass (x, y) of the thin

plate represented by R is given by

x =
1

M

∫∫

R

xf dx dy, y =
1

M

∫∫

R

yf dx dy

where M is the mass of R.

V) Moment of Inertia The moment of inertia quantifies the resistance of
a physical object to angular acceleration. Moment of inertia is to rota-

tional motion as mass is to linear motion. An object’s moment of inertia
depends on its shape and the distribution of mass within that shape:

the greater the concentration of material away from the object’s center,
the larger the moment of inertia. If f is density, and R the thin plate,
the moments of inertia about the x-axis and y-axis are

Ix =

∫∫

R

y2f dx dy, Iy =

∫∫

R

x2f dx dy,

and the polar moment of inertia (inertia about the origin) is IO = Ix+Iy.

Example 36.5. Find the center of mass and the moments of inertia of the
thin plate covering the triangular region with vertices (0, 0), (1, 0), and (1, 2),

given that the plate’s density is f(x, y) = 12x+ 12y + 6.

First, we find M , the mass of the plate:
∫ 1

0

∫ 2x

0

(12x+ 12y + 6) dy dx =

∫ 1

0

(12xy + 6y2 + 6y)
∣

∣

2x

0
dx

=

∫ 1

0

(48x2 + 12x) dx = 16x3 + 6x2
∣

∣

1

0
= 22.

Now we have

x = 1
22

∫ 1

0

∫ 2x

0

(12x2 + 12xy + 6x) dy dx

= 1
22

∫ 1

0

(12x2y + 6xy2 + 6xy)
∣

∣

2x

0
dx = 1

22

∫ 1

0

(48x3 + 12x2) dx

= 1
22

(12x4 + 4x3)
∣

∣

1

0
= 1

22
(16) = 8

11
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Similarly, we find y = 9
11; hence, the center of mass is at the point

(

8
11,

9
11

)

.

The moment of inertia about the x-axis is given by

Ix =

∫ 1

0

∫ 2x

0

(12xy2 + 12y3 + 6y2) dy dx

=

∫ 1

0

(4xy3 + 3y4 + 2y3)
∣

∣

2x

0
=

∫ 1

0

(80x4 + 16x3) dx

= 16x5 + 4x4
∣

∣

1

0
= 20

Similarly, the moment of inertia about the y-axis is 68
5 ; hence the moment of

inertia about the origin is 68
5

+ 20 = 168
5

.

HOMEWORK FOR DAY 36. Page 235, #1 part c, #3 part a, #5; Verify y and

Iy from Example 36.5
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HOMEWORK ANSWERS. #3 a) The region is a trapezoid with vertices (1, 0),

(2,−1), (2, 3), and (1, 2); there are three limits for x, and we have no choice
but to use a piecewise function: the integral is

∫ 3

−1

∫ 2

h(y)

f(x, y) dx dy, where h(y) =











1 − y −1 ≤ y ≤ 0

1 0 ≤ y ≤ 2

y − 1 2 ≤ y ≤ 3

#5

a) R is a triangle with vertices (1/2, 0), (1, 0), and (1/2, 1/2); thus, the

integral is
∫ 1/2

0

∫ 1−y

1/2 f dx dy.

b) R is quartercircle of radius 1 in the first quadrant; thus, the integral is
∫ 1

0

∫

√
1−y2

0 f dx dy.

c) R is a triangle with vertices (−1, 0), (0, 0), and (0, 1); thus, the integral
is
∫ 0

−1

∫ x+1

0 f dy dx.

d) R is again a triangle with vertices (1, 0), (1, 2), and (0, 1); thus, R can be
split along the line y = 1 into two congruent pieces, so that the integral

is then 2
∫ 1

0

∫ 1

1−y f dx dy.

Verifying y and Iy from Example 36.5 is easy.

DR. C. GARNER, RMSST, MULTIVARIABLE CALCULUS NOTES, 2006-2007 Page 119



Day 37

37 Sections 4.4 and 4.5, Triple Integrals and In-
tegrals of Vector Functions

Objective. Students will evaluate triple integrals and integrals of vector func-

tions.

The definition is
∫∫∫

R

f(x, y, z) dx dy dz = lim
h→0

n
∑

i=1

f(x∗i , y
∗
i , z

∗
i )∆iV

where ∆iV is the volume of the ith rectangular parallelepiped in R, h is

the maximum space diagonal of the n parallelepipeds, and (x∗i , y
∗
i , z

∗
i ) is an

arbitrary point in the ith parallelepiped. —[[Larson 110]]—

Reduction to an iterated integral given the region R defined by a ≤ x ≤
b, g1(x) ≤ y ≤ g2(x), z1(x, y) ≤ z ≤ z2(x, y) is

∫∫∫

R

f(x, y, z) dx dy dz =

∫ b

a

∫ g2(x)

g1(x)

∫ z2(x,y)

z1(x,y)

f(x, y, z) dz dy dx.

Since a single integral determines area and a double integral determines
volume, it is natural to assume that a triple integral determines some type of

“hypervolume.” But it is simpler to interpret this as mass:
∫∫∫

R f dx dy dz
is the mass of a solid of density f , and

∫∫∫

R dx dy dz is the volume of the

region R. The center of mass and moments of inertia are defined similarly;
the Mean Value Theorem holds as well.

Example 37.1. Evaluate
∫∫∫

R(xy2 + yz3) dx dy dz if R is defined by −1 ≤
x ≤ 1, 3 ≤ y ≤ 4, 0 ≤ z ≤ 2.

∫ 4

3

∫ 1

−1

∫ 2

0

(xy2 + yz3) dz dx dy

=

∫ 4

3

∫ 1

−1

(xy2z + 1
4yz

4)
∣

∣

2

0
dx dy

=

∫ 4

3

∫ 1

−1

(2xy2 + 4y) dx dy =

∫ 4

3

x2y2 + 4xy
∣

∣

1

−1
dy

=

∫ 4

3

8y dy = 4y2
∣

∣

4

3
= 28
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Example 37.2. Evaluate
∫∫∫

R(2x − y − z) dz dy dx if R is defined by 0 ≤
x ≤ 1, 0 ≤ y ≤ x2, 0 ≤ z ≤ x+ y.

∫ 1

0

∫ x2

0

∫ x+y

0

(2x− y − z) dz dy dx

=

∫ 1

0

∫ x2

0

(

2xz − yz − 1

2
z2

)
∣

∣

∣

∣

x+y

0

dy dx

=

∫ 1

0

∫ x2

0

3

2
(x2 − y2) dy dx =

3

2

∫ 1

0

(

x2y − 1

3
y3

)
∣

∣

∣

∣

x2

0

dx

=
3

2

∫ 1

0

(

x4 − 1

3
x6

)

dx =
3

2

(

1

5
x5 − 1

21
x7

)
∣

∣

∣

∣

1

0

=
8

35

Example 37.3. Evaluate
∫∫∫

R(x + z) dz dy dx if R is the tetrahedron with

vertices A(0, 0, 0), B(1, 0, 0), C(0, 2, 0), and D(0, 0, 3).

Clearly 0 ≤ x ≤ 1. In the xy-plane, the tetrehedron forms a right triangle

whose hypotenuse is the line y = 2−2x; hence, 0 ≤ y ≤ 2−2x. To determine
the height of a cross section of the tetrahedron, it becomes necessary to
determine the plane including the non-axial face of the tetrahedron. Thus,

−→
BD ×

−→
BC=

∣

∣

∣

∣

∣

∣

i j k

−1 0 3
−1 2 0

∣

∣

∣

∣

∣

∣

= −6i − 3j− 2k

is a vector perpendicular to the plane. Using point B, the equation of the
plane is

−6(x− 1) − 3y − 2z = 0,

or 2z = −6x− 3y+ 6. Hence, 0 ≤ z ≤ −3x− 3
2y + 3. Therefore, the integral
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is
∫∫∫

R

(x+ z) dz dy dx

=

∫ 1

0

∫ 2−2x

0

∫ −3x−3y/2+3

0

(x+ z) dz dy dx

=

∫ 1

0

∫ 2−2x

0

(

xz +
1

2
z2

)
∣

∣

∣

∣

−3x−3y/2+3

0

dy dx

=

∫ 1

0

∫ 2−2x

0

(

9

2
− 6x+

3

2
x2 + 3xy − 9

2
y +

9

8
y2

)

dy dx

=

∫ 1

0

(

9

2
y − 6xy +

3

2
x2y +

3

2
xy2 − 9

4
y2 +

3

8
y3

)∣

∣

∣

∣

2−2x

0

dx

=

∫ 1

0

3
(

1 − 2x+ x2
)

dx = 3

(

x− x2 +
1

3
x3

)
∣

∣

∣

∣

1

0

= 1

Example 37.4. Evaluate
∫∫∫

R f(x, y, z) dV for f(x, y, z) = x2 + z2 and R as

the pyramid with vertices (±1,±1, 0) and (0, 0, 1).

Here, we consider only an eighth of the pyramid as the region, and multiply

the integral by 8. The region under consideration is then a tetrahedron with
vertices at the origin, (0, 0, 1), (1, 1, 0) and (1, 0, 0). We have 0 ≤ x ≤ 1 and

0 ≤ y ≤ x. By the methods in the previous example, the non-axial face is
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the plane x+ z = 1 so that 0 ≤ z ≤ 1 − x. Therefore,

∫ 1

0

∫ x

0

∫ 1−x

0

(x2 + z2) dz dy dx

=

∫ 1

0

∫ x

0

(

x2z +
1

3
z3

)
∣

∣

∣

∣

1−x

0

dy dx

=

∫ 1

0

∫ x

0

[

x2(1 − x) +
1

3
(1 − x)3

]

dy dx

=

∫ 1

0

[

x2(1 − x) +
1

3
(1 − x)3

]

y

∣

∣

∣

∣

x

0

dx

=

∫ 1

0

x

[

x2(1 − x) +
1

3
(1 − x)3

]

dx

=

∫ 1

0

(

−4

3
x4 + 2x3 − x2 +

1

3
x

)

dx

= − 4

15
x5 +

1

2
x4 − 1

3
x3 +

1

6
x2

∣

∣

∣

∣

1

0

= − 4

15
+

1

2
− 1

3
+

1

6
=

1

15

Hence,
∫∫∫

R(x2 + z2) dV = 8
15.

Vector Fucntions Integrals of vector function follow normal rules, see page
234.

HOMEWORK FOR DAY 37. Page 234, #1 part b)—approximate final intergal
numerically; Page 235, #4 part a; Page 236, #10
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HOMEWORK ANSWERS. #1 b) The condition u2+v2 ≤ 1 implies −1 ≤ u ≤ 1

and −
√

1 − u2 ≤ v ≤
√

1 − u2. Thus, the integral becomes

∫ 1

−1

∫

√
1−u2

−
√

1−u2

∫ 1

0

u2v2w dw dv du =

∫ 1

−1

∫

√
1−u2

−
√

1−u2

1

2
u2v2w2

∣

∣

∣

∣

1

0

dv dw

=

∫ 1

−1

∫

√
1−u2

−
√

1−u2

1

2
u2v2 dv du

=

∫ 1

−1

1

6
u2v3

∣

∣

∣

∣

√
1−u2

−
√

1−u2

du

=

∫ 1

−1

1

3
u2(1 − u2)

√

1 − u2 du

=
π

48
≈ 0.065

#4 a) Since the cube given is the unit cube, we have the following integral:

∫ 1

0

∫ 1

0

∫ 1

0

√
x+ y + z dz dy dx

=

∫ 1

0

∫ 1

0

2

3
(x+ y + z)3/2

∣

∣

∣

∣

1

0

dy dx

=

∫ 1

0

∫ 1

0

2

3

(

(x+ y + 1)3/2 − (x+ y)3/2
)

dy dx

=

∫ 1

0

2

3

(

2

5
(x+ y + 1)5/2 − 2

5
(x+ y)5/2

)
∣

∣

∣

∣

1

0

dx

=

∫ 1

0

4

15

(

(x+ 2)5/2 − 2(x+ 1)5/2 + x5/2
)

dx

=
4

15

(

2

7
(x+ 2)7/2 − 4

7
(x+ 1)7/2 +

2

7
x7/2

)∣

∣

∣

∣

1

0

=
8

105

(

37/2 − 2(27/2) + 1 − 27/2 + 2
)

=
8

105

(

27
√

3 − 24
√

2 + 3
)

=
8

35

(

9
√

3 − 8
√

2 + 1
)
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#10 a)

∫ 1

0

F(t) dt = 1
3t

3i − etj + log(1 + t)k
∣

∣

1

0

= 1
3i − ej + (log 2)k + j = 1

3i + (1 − e)j + (log 2)k

#10 b)

∫ 1

0

∫ 1−x

0

F(t) dt =

∫ 1

0

(

1

2
x2y2i +

1

3
xy3j

)
∣

∣

∣

∣

1−x

0

dx

=

∫ 1

0

[

1

2
(x2 − 2x3 + x4)i +

1

3
(x− 3x2 + 3x3 − x4)j

]

dx

=
1

2

(

1

3
x3 − 1

2
x4 +

1

5
x5

)

i +
1

3

(

1

2
x2 − x3 +

3

4
x4 − 1

5
x5

)

j

∣

∣

∣

∣

1

0

=
1

60
(i + j)
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38 Section 4.6, Change of Variables in Double
Integrals

Objective. Students will prove the substitution method of integration. Stu-

dents will change variables in double integrals to evaluate them.

We review, and prove, substitution in integrals of single variable functions.

Theorem 38.1. If f(x) is continuous on [a, b], where x = x(u) is defined
on [au, bu] and has a continuous derivative, with a = x(au), b = x(bu), and

f(x(u)) is continuous on [au, bu], then
∫ b

a f(x) dx =
∫ bu

au
f(x(u))dx

du
du.

Proof. Let F (x) be an antiderivative of f(x). Then
∫ b

a f(x) dx = F (b)−F (a).
Next, by the Chain Rule, we have

dF

du
=
df

dx

dx

du
= f(x)

dx

du
= f(x(u))

dx

du
,

so that F (x(u)) is an antiderivative of f(x(u))dx
du. Thus,

∫ bu

au

f(x(u))
dx

du
du = F (x(bu)) − F (x(au)) = F (b) − F (a).

Example 38.1. Evaluate

∫ π/4

0

x cosx(x sinx− cosx)

1 + x cosx
dx.

Let t = 1 + x cosx. Then dt = (cosx− x sinx) dx. Note that t = 1 when

x = 0 and that t = 1 + π
√

2
8 when x = π

4 . Then the integral becomes

∫ 1+π
√

2/8

1

−t− 1

t
dt =

∫ 1+π
√

2/8

1

(

1 − 1

t

)

dt

= −(t− log t)|1+π
√

2/8
1

= −
(

1 +
π
√

2

8
− log

(

1 +
π
√

2

8

)

− 1

)

= log

(

1 +
π
√

2

8

)

− π
√

2

8
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Substitution in double integrals has the form
∫∫

Rxy

f(x, y) dx dy =

∫∫

Ruv

f(x(u, v), y(u, v))

∣

∣

∣

∣

∂(x, y)

∂(u, v)

∣

∣

∣

∣

du dv.

Note that we use the absolute value of the Jacobian.

Example 38.2. Reduce
∫∫

Rxy
f(x, y) dx dy to an iterated integral of polar

functions x = r cos θ, y = r sin θ, where Rxy is the triangle with vertices

(0, 0), (1, 0), and (1, 1).

First, we find the Jacobian:

J =
∂(x, y)

∂(r, θ)
=

∣

∣

∣

∣

cos θ −r sin θ

sin θ r cos θ

∣

∣

∣

∣

= r.

Clearly, the region must be described in terms of r and θ. We have 0 ≤ x ≤
1, 0 ≤ y ≤ x. The y interval becomes 0 ≤ θ ≤ π

4 . The x interval becomes
0 ≤ r ≤ sec θ. Hence,

∫∫

Rxy

f(x, y) dx dy =

∫ π/4

0

∫ sec θ

0

f(r cos θ, r sin θ) r dr dθ.

Example 38.3. Evaluate
∫∫

Rxy
e−x2−y2

dx dy where Rxy is the region in the

first quadrant bounded by x2 + y2 = 1 and x2 + y2 = 4.

We convert this to polar. The region in the polar plane is bounded by
r = 1 and r = 2; since the region is the first quadrant, we have 0 ≤ θ ≤ π

2 .

From the previous example, the Jacobian is r, so

∫∫

Rxy

e−x2−y2

dx dy =

∫∫

Rrθ

e−r2

r dr dθ =

∫ π/2

0

∫ 2

1

e−r2

r dr dθ

=

∫ π/2

0

−1

2
e−r2

∣

∣

∣

∣

2

1

dθ =

∫ π/2

0

−1

2
(e−4 − e−1) dθ

= −π
4
(e−4 − e−1) ≈ 0.275

Example 38.4. A region in the xy-plane is a parallelogram with vertices
(0, 0), (4, 2), (5, 5) and (1, 3). Find a transformation to the uv-plane so the
region becomes a rectangle.
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Answer: u = 1
2x− y, v = 3x− y so that −5

2 ≤ u ≤ 0 and 0 ≤ v ≤ 10.

Example 38.5. Evaluate
∫∫

Rxy
(x+ y)3 dx dy where Rxy is the parallelogram

with sides x+ y = 1, x+ y = 4, x− 2y = 1, and x− 2y = −2.

We introduce a substitution defined by x + y = u and x − 2y = v which

becomes the rectangle 1 ≤ u ≤ 4, −2 ≤ v ≤ 1 in the uv-plane. Thus, since

J =
∂(x, y)

∂(u, v)
=

1

∂(u, v)

∂(x, y)

=
1

∣

∣

∣

∣

1 1
1 −2

∣

∣

∣

∣

= −1

3
,

we have
∫∫

Rxy

(x+ y)3 dx dy =

∫ 1

−2

∫ 4

1

u3

3
du dv =

255

4
.

Example 38.6. Evaluate
∫∫

R e
(y−x)/(y+x) dx dy where R is the trapezoid in

the first quadrant bounded by x+ y = 1 and x+ y = 2.

We use u = y−x and v = y+x. Clearly, 1 ≤ v ≤ 2. We find bounds on u

(which correspond to the axial sides of the trapezoid) by solving the system
{

y − x = u

y + x = v

two ways: for x to get 2y = u+ v, in which case u = −v along the line y = 0;
and for y to get 2x = v− u, in which case u = v along the line x = 0. Hence,

−v ≤ u ≤ v. Next,

J =
∂(x, y)

∂(u, v)
=

1

∂(u, v)

∂(x, y)

=
1

∣

∣

∣

∣

−1 1
1 1

∣

∣

∣

∣

= −1

2

so the integral is
∫ 2

1

∫ v

−v

1

2
eu/v du dv =

1

2

∫ 2

1

veu/v
∣

∣

∣

v

−v
dv =

1

2

∫ 2

1

v(e− e−1) dv

=
1

4
(e− e−1) v2

∣

∣

2

1
=

3

4
(e− e−1) ≈ 1.763

Example 38.7. Evaluate
∫∫

R
(x−y)2

1+x+y dx dy where R is the trapezoid bounded
by x + y = 1 and x + y = 2 in the first quadrant.
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We use u = 1 + x+ y and v = x− y. Clearly, 2 ≤ u ≤ 3. We find bounds

on v (which correspond to the axial sides of the trapezoid) by solving the
system

{

x+ y = u− 1

x− y = v

two ways: for x to get 2x = u − 1 + v, in which case v = x along the line

y = 0 so that v = u−1; and for y to get 2y = u−1−v, in which case v = −y
along the line x = 0 so that v = 1 − u. Hence, 1 − u ≤ v ≤ u− 1. Next,

J =
∂(x, y)

∂(u, v)
=

1

∂(u, v)

∂(x, y)

=
1

∣

∣

∣

∣

1 1
1 −1

∣

∣

∣

∣

= −1

2

so the integral is

∫ 3

2

∫ u−1

1−u

v2

2u
dv du =

∫ 3

2

v3

6u

∣

∣

∣

∣

u−1

1−u

du

=

∫ 3

2

(

u2

3
− u+ 1 − 1

3u

)

du

=
u3

9
− u2

2
+ u− log u

3

∣

∣

∣

∣

3

2

= 3 − 9

2
+ 3 − log 3

3
− 8

9
+ 2 − 2 +

log 2

3

=
11

18
− log(3/2)

3

HOMEWORK FOR DAY 38. Page 241, #1 parts a and b (part c is extra credit),

#4 parts a, b, and c
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HOMEWORK ANSWERS. #1

a) Since x = sin θ, dx = cos θdθ. x ∈ [0, 1] implies θ ∈ [0, π
2 ]. Hence, the

integral is

∫ π/2

0

(1 − sin2 θ)3/2 cos θ dθ =

∫ π/2

0

cos4 θdθ

=

∫ π/2

0

[

cos2 θ − (cos θ sin θ)2
]

dθ

=

∫ π/2

0

[

3

8
+

1

2
cos 2θ +

1

8
cos 4θ

]

dθ

=
3

8
θ +

1

4
sin 2θ +

1

32
sin 4θ

∣

∣

∣

∣

π/2

0

=
3π

16

b) Since x = u2 − 1, dx = 2u du. x ∈ [0, 1] implies u ∈ [1,
√

2]. Then the
integral is

∫

√
2

1

2u

1 + u
du =

∫ 1+
√

2

2

2(v − 1)

v
dv

where we have another substitution v = 1 + u, where v ∈ [2, 1 +
√

2].

= 2

∫ 1+
√

2

2

(

1 − 1

v

)

dv = 2(v − log v)|1+
√

2
2

= 2
(

1 +
√

2 − log(1 +
√

2) − 2 + log 2
)

= 2
√

2 − 2 + log(2
√

2 − 2)

c) Since t = tan x
2
, we have sin x

2
= t√

t2+1
and cos x

2
= 1√

t2+1
. Therefore,

since dt = 1
2 sec2 x

2 dx, we have dx = 2 cos2 x
2 dt = 2

t2+1 dt. Next, we need
all angles in terms of x rather than x

2 ; thus, using double-angle identities,
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we get sin x = 2t
t2+1 and cosx = 1−t2

t2+1. Thus, the integral becomes

∫ 1

0

2
t2+1 dt

2t
t2+1 + 1−t2

t2+1 + 2
=

∫ 1

0

2 dt

t2 + 2t+ 3
=

∫ 1

0

2 dt

(t+ 1)2 + 2

=

∫ 1

0

dt
(

t+1√
2

)2

+ 1
=

√
2 arctan

(

t+ 1√
2

)∣

∣

∣

∣

1

0

=
√

2

(

arctan
√

2 − arctan
1√
2

)

#4

a) The condition x2 + y2 ≤ 1 implies r2 ≤ 1, so 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π.
Ergo, the integral is

∫ 1

0

∫ 2π

0

(1 − r2)r dθ dr =

∫ 1

0

(rθ − r3θ)
∣

∣

2π

0

=

∫ 1

0

(2πr − 2πr3) dr = 2π

(

r2

2
− r4

4

)∣

∣

∣

∣

1

0

=
π

2

b) Since 0 ≤ y ≤ x, 0 ≤ θ ≤ π
4 . Also, 1 ≤ x ≤ 2 implies that sec θ ≤ r ≤

2 sec θ. Hence,

∫ π/4

0

∫ 2 sec θ

sec θ

r2 tan θ dr dθ =

∫ π/4

0

1

3
r2 tan θ

∣

∣

∣

∣

2 sec θ

sec θ

dθ

=
1

3

∫ π/4

0

(7 sec2 θ tan θ) dθ

=
7

6
sec2 θ

∣

∣

∣

∣

π/4

0

=
7

2

c) We have a square bounded by the lines y−x = ±π and y+x = π, y+x =
3π. Then −π ≤ u ≤ π and π ≤ v ≤ 3π. Next,

J =
∂(x, y)

∂(u, v)
=

1

∂(u, v)

∂(x, y)

=
1

∣

∣

∣

∣

1 −1

1 1

∣

∣

∣

∣

=
1

2
,
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so the integral is

1

2

∫ π

−π

∫ 3π

π

u2 sin2 v dv du =
1

2

∫ π

−π

u2

(

1

2
v − 1

4
sin 2v

)∣

∣

∣

∣

3π

π

du

=
1

2

∫ π

−π

u2

(

3π

2
− π

2

)

du

=
π

6
u3
∣

∣

∣

π

−π
=
π4

3
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39 Section 4.7, Arc Length and Surface Area

Objective. Students will find arc length of space curves. Students will prove
the formula for surface area of a surface in space and apply it.

Length of a curve in space defined parametrically has length

L =

∫ b

a

√

(

dx

dt

)2

+

(

dy

dt

)2

+

(

dz

dt

)2

dt.

The derivation of the surface area of a surface in space has much to do

with arc length of a curve in a plane. We review this.
Let f(x) be defined on [a, b]. For some ci ∈ [xi, xi +h] we find the tangent

to f(x) at ci to be y − y(ci) = f ′(ci)(x − ci). Let Th be the length of the
tangent from xi to xi + h. Then

L = lim
n→∞
h→0

n
∑

i=1

Th.

Let αi be the angle Th makes with the x-axis. Then cosαi = h/Th, or

Th = h secαi. Then

lim
n→∞
h→0

n
∑

i=1

Th = lim
n→∞
h→0

n
∑

i=1

h secαi = lim
n→∞
h→0

n
∑

i=1

h
√

1 + tan2 αi

= lim
n→∞
h→0

n
∑

i=1

h

√

1 + [f ′(xi)]
2 =

∫ b

a

√

1 + [f ′(x)]2 dx

Theorem 39.1. If z = f(x, y) is defined and has continuous partial deriva-
tives in R ⊆ D, then the surface area of a surface in space is

S =

∫∫

R

√

1 +

(

∂z

∂x

)2

+

(

∂z

∂y

)2

dx dy.

Proof. Let (xi, yi) be a point of the ith rectangle of the subdivision of R ⊆ D.

Then the tangent plane at (xi, yi) is

z − zi =
∂z

∂x
(x− xi) +

∂z

∂y
(y − yi)
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where the partials are evaluated at (xi, yi). Let Si be the area of the part of

tangent plane above the ith rectangle. Then Si is the area of a parallelogram
whose projection is a rectangle on R with area Ai. Let ni be the normal to
z at (xi, yi); hence, —[[Thomas 13.38, 13.39, 13.40]]—

ni = −∂z
∂x

i − ∂z

∂y
j + k.

Then Si = sec γiAi, where γi is the angle between ni and k. Note that

cos γi =
ni · k

||ni||||k||
=

1
√

1 +

(

∂z

∂x

)2

+

(

∂z

∂y

)2

so that

sec γi =

√

1 +

(

∂z

∂x

)2

+

(

∂z

∂y

)2

.

Hence, if we let di denote the diagonal of the ith rectangle,

lim
n→∞
d→0

n
∑

i=1

Si = lim
n→∞
d→0

n
∑

i=1

Ai sec γi

= lim
n→∞
d→0

n
∑

i=1

Ai

√

1 +

(

∂z

∂x

)2

+

(

∂z

∂y

)2

=

∫∫

R

√

1 +

(

∂z

∂x

)2

+

(

∂z

∂y

)2

dx dy

Example 39.1. Find the surface area of the paraboloid z = x2 + y2 bounded
by x2 + y2 = 4.

—[[Thomas 13.41]]— We have that −
√

4 − x2 ≤ y ≤
√

4 − x2 and
−2 ≤ x ≤ 2 Thus,

A =

∫∫

R

√

1 + (2x)2 + (2y)2 dx dy =

∫∫

R

√

1 + 4x2 + 4y2 dx dy.
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This integral is tedious; we change to polar. Then 0 ≤ r ≤ 2 and 0 ≤ θ ≤ 2π.

Hence, since the Jacobian is r,

A =

∫ 2π

0

∫ 2

0

r
√

4r2 + 1 dr dθ =

∫ 2π

0

1

12
(4r2 + 1)3/2

∣

∣

∣

∣

2

0

dθ

=

∫ 2π

0

1

12
(173/2 − 1) dθ =

π

6
(173/2 − 1)

≈ 36.177

Theorem 39.2. Let x = x(u, v), y = y(u, v), z = z(u, v) be the parametriza-
tion of a surface in space. If all first partials are defined in R ⊆ D, then the

surface area is

S =

∫∫

Ruv

√

EG− F 2 du dv

where

E =

(

∂x

∂u

)2

+

(

∂y

∂u

)2

+

(

∂z

∂u

)2

,

F =
∂x

∂u

∂x

∂v
+
∂y

∂u

∂y

∂v
+
∂z

∂u

∂z

∂v
,

G =

(

∂x

∂v

)2

+

(

∂y

∂v

)2

+

(

∂z

∂v

)2

.

Example 39.2. Consider a torus parametrized by x = (2 + cos v) cosu, y =

(2 + cos v) sinu, z = sin v for 0 ≤ u, v ≤ 2π. Find its surface area.

We compute E, F , and G.

E = (2 + cos v)2 sin2 u+ (2 + cos v)2 cos2 u = (2 + cos v)2

F = (2 + cos v) sinu sin v cosu− (2 + cos v) cosu sin v sinu = 0

G = sin2 v cos2 u+ sin2 v sin2 u+ cos2 v = 1

EG− F 2 = (2 + cos v)2

Hence, the surface area is

S =

∫ 2π

0

∫ 2π

0

(2 + cos v) dv du =

∫ 2π

0

(2v + sin v)|2π
0 du =

∫ 2π

0

4π du = 8π2.

HOMEWORK FOR DAY 39. Page 248, #2 part b, #3; Page 249 #9 (#2 part
a is extra credit)
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HOMEWORK ANSWERS. #2 a) We use the positive root of z to compute the

surface area of the hemisphere; then multuiply the result by 2. Since R is
the circle x2 + y2 = a2 so −a ≤ x ≤ a, −

√
a2 − x2 ≤ y ≤

√
a2 − x2. Note

that ∂z
∂x

= −x√
a2−x2−y2

and ∂z
∂y

= −y√
a2−x2−y2

. Thus,

∫ a

−a

∫

√
a2−x2

−
√

a2−x2

√

1 +
x2

a2 − x2 − y2
+

y2

a2 − x2 − y2
dy dx

=

∫ a

−a

∫

√
a2−x2

−
√

a2−x2

a
√

a2 − x2 − y2
dy dx

=

∫ a

−a

∫

√
a2−x2

−
√

a2−x2

a√
a2 − x2

√

1 − y2

a2 − x2

dy dx

=

∫ a

−a

a arcsin
y√

a2 − x2

∣

∣

∣

∣

√
a2−x2

−
√

a2−x2

dx

=

∫ a

−a

aπ dx = aπx|a−a = 2a2π.

Thus, the surface area of the entire sphere is 4a2π.

#2 b) We compute E, F , and G.

E = a2 cos2 φ cos2 θ + a2 cos2 φ sin2 θ + a2 sin2 φ = a2

F = −a2 cosφ cos θ sinφ sin θ + a2 cosφ sin θ sinφ cos θ = 0

G = a2 sin2 φ sin2 θ + a2 sin2 φ cos2 θ = a2 sin2 φ

EG− F 2 = a4 sin2 φ

Hence, the surface area is

S =

∫ 2π

0

∫ π

0

√

a4 sin2 φ dφ dθ = a2

∫ 2π

0

∫ π

0

sinφ dφ dθ

= a2

∫ 2π

0

− cosφ|π0 dθ

= 2a2θ
∣

∣

2π

0
= 4a2π
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#3 a) We compute E, F , and G.

E = (b+ a cos v)2 sin2 u+ (b+ a cos v)2 cos2 u = (b+ a cos v)2

F = a(b+ a cos v) sinu sin v cosu− a(b+ a cos v) cosu sin v sinu = 0

G = a2 sin2 v cos2 u+ a2 sin2 v sin2 u+ a2 cos2 v = a2

EG− F 2 = a2(b+ a cos v)2

Hence, the surface area is

S =

∫ 2π

0

∫ 2π

0

a(b+ a cos v) dv du = a

∫ 2π

0

(bv + a sin v)|2π
0 du

= a

∫ 2π

0

2πb du

= 2πabu|2π
0 = 4π2ab

#3 b) We compute E, F , and G.

E = 4u2 sin2 2v + 1

F = 4u3 sin 2v cos 2v

G = u2 + 4u4 cos2 2v

EG− F 2 = u2 + 4u4

Hence, the surface area is

S =

∫ 1

0

∫ π/2

0

u
√

1 + 4u2 dv du =
π

2

∫ 1

0

u
√

1 + 4u2 du

=
π

16
· 2

3
(1 + 4u2)3/2

∣

∣

∣

∣

1

0

=
π

24
(53/2 − 1)

#9 Use Equation 2.59 on page 106 to rewrite the integrand, then find a

common denominator.
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40 Section 4.8, Improper Multiple Integrals

Objective. Students will use a limit process to evaluate improper double in-
tegrals.

Review single-variable improper integrals. Distinguish between bounded

and unbounded.
Discontinuities could be points or boundaries; i.e., sin y

x is discontinuous
on the y-axis, and 1

x+y
is discontinuous only at the origin.

Example 40.1. Evaluate
∫∫

R
1√

x2+y2
p dx dy where R = {(x, y)|x2 + y2 ≤ 1}.

We have a point discontinuity at the origin. We use polar to integrate:
∫ 2π

0

∫ 1

h

1

rp
r dr dθ =

∫ 2π

0

∫ 1

h

1

rp−1
dr dθ =

∫ 2π

0

r2−p

2 − p

∣

∣

∣

∣

1

h

dθ

=

∫ 2π

0

(

1 − h2−p

2 − p

)

dθ = 2π

(

1 − h2−p

2 − p

)

As h → 0, we get 2π
2−p if p < 2. If p > 2 we get 2π

2−p

(

1 − 1
hp−2

)

and as h → 0,
the integral diverges. If p = 2,

∫ 2π

0

∫ 1

h

1

r
dr dθ =

∫ 2π

0

log r|1h dθ

=

∫ 2π

0

− log h dθ = −2π log h

and as h→ 0, it diverges. Note the similarity with single variable at p = 1.

Example 40.2. Evaluate
∫∫

R − log xy dx dy if R is the square 0 < x, y ≤ 1.

∫ 1

h

∫ 1

h

− log xy dx dy =

∫ 1

h

∫ 1

h

(− log x− log y) dx dy

=

∫ 1

h

(−x logx+ x− x log y)|1h dy

=

∫ 1

h

(1 − log y + h log h− h+ h log y) dy

= 2y − y log y + hy log h+ hy log y − 2hy|1h
= 2 + 2h log h− 4h− 2h2 log h+ 2h2

As h→ 0, we get 2.
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Example 40.3. Evaluate
∫∫

R 1/x2y2 dx dy where R is the infinite region

x ≥ 1, y ≥ 1.

∫ h

1

∫ h

1

1

x2y2
dx dy =

∫ h

1

−1

xy2

∣

∣

∣

∣

h

1

dy =

∫ h

1

(

− 1

hy2
+

1

y2

)

dy

=
1

hy
− 1

y

∣

∣

∣

∣

h

1

=
1

h2
− 2

h
+ 1

As h→ ∞, we get 1.

Example 40.4. Evaluate
∫∫

R log
√

x2 + y2 dx dy where R is the unit disk
x2 + y2 ≤ 1.

We use polar to integrate.

∫ 2π

0

∫ 1

h

r log r dr dθ =

∫ 2π

0

r2

4
(2 log r − 1)

∣

∣

∣

∣

1

h

dθ

=

∫ 2π

0

(

−1

4
− h2

4
(2 logh− 1)

)

dθ

= −π
2
− πh2

2
(2 logh− 1)

As h→ 0, we get −π/2.

HOMEWORK FOR DAY 40. Page 252 #1; Page 253 #4 parts b and c
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HOMEWORK ANSWERS. #1 Using polar to evaluate the equations, we have

that the region x ≥ 0, y ≥ 0 becomes r ≥ 0, 0 ≤ θ ≤ π/2. Thus,

∫ π/2

0

∫ h

0

e−r2

r dr dθ =

∫ π/2

0

−e
−r2

2

∣

∣

∣

∣

∣

h

0

dθ

=

∫ π/2

0

1 − e−h2

2
dθ

=
π(1 − e−h2

)

4

As h→ ∞ we get π/4; hence the original integral is
√

π/4 = 1
2

√
π.

#4 b)

∫ 2π

0

∫ 1

h

log r2

r
r dr dθ = 2

∫ 2π

0

∫ 1

h

log r dr dθ

= 2

∫ 2π

0

(r log r − r)|1h dθ

= 2

∫ 2π

0

(−1 − h log h+ h) dθ

= 4π(h− 1 − h log h) + 1

As h→ 0, we have 1 − 4π.

#4 c)

∫ 2π

0

∫ h

1

2r log r dr dθ = 2

∫ 2π

0

r2

4
(2 log r − 1)

∣

∣

∣

∣

h

1

dθ

= 2

∫ 2π

0

(

h2

4
(2 logh− 1) +

1

4

)

dθ

= 4π

(

h2

4
(2 logh− 1) +

1

4

)

As h→ ∞, the integral diverges.
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41 Section 4.9, Integrals Depending on a Pa-
rameter

An integral of a function f(x, t) such as
∫ b

a sin(xt) dx = F (t) is a function of

the parameter t. For example,
∫ π

0 sin(xt) dx = 1−cos(πt)
t = F (t).

We can tabulate this for values of t, and we get a well-defined function. If
F (t) =

∫ b

a f(x, t) dx has no antiderivative, we still get a well-defined function.

But then we focus on the derivative of F (t).

Theorem 41.1 (Leibniz’s Rule). Let f(x, t) be continuous and have a contin-

uous derivative ∂f/∂t in a domain of the xt-plane that includes the rectangle
a ≤ x ≤ b, t1 ≤ t ≤ t2. Then for t ∈ [t1, t2], we have

d

dt

∫ b

a

f(x, t) dx =

∫ b

a

∂f

∂t
(x, t) dx.

Proof. For t ∈ [t1, t2], let

g(t) =

∫ b

a

∂f

∂t
(x, t) dx.

Since ∂f/∂t is continuous, so is g(t), by Fubini’s Theorem. Let t∗ ∈ [t1, t2].

Then
∫ t∗

t1

g(t) dt =

∫ t∗

t1

∫ b

a

∂f

∂t
(x, t) dx dt =

∫ b

a

∫ t∗

t1

∂f

∂t
(x, t) dt dx

=

∫ b

a

[f(x, t∗) − f(x, t1)] dx =

∫ b

a

f(x, t∗) dx−
∫ b

a

f(x, t1) dx

= F (t∗) − F (t1).

Now, if we let t∗ be a variable t, we have F (t)−F (t1) =
∫ t

t1
g(u) du. Both

sides can be differentiated with respect to t to get F ′(t) = g(t).

Example 41.1. Evaluate
d

dt

∫ π/2

0

sin(xt)

x
dx.

d

dt

∫ π/2

0

sin(xt)

x
dx =

∫ π/2

0

cos(xt) dx =
sin(xt)

t

∣

∣

∣

∣

π/2

0

=
sin(πt/2)

t
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Theorem 41.2. Let f(x, t) be continuous and have a continuous derivative

∂f/∂t in a domain of the xt-plane. Let a(t) and b(t) be defined and have
continuous derivatives for t1 ≤ t ≤ t2. Then for t ∈ [t1, t2],

d

dt

∫ b(t)

a(t)

f(x, t) dx = f(b(t), t)b′(t) − f(a(t), t)a′(t) +

∫ b(t)

a(t)

∂f

∂t
(x, t) dx.

Example 41.2. Evaluate
d

dt

∫ tan t

t

x2t dx.

d

dt

∫ tan t

t

x2t dx = t tan2 t sec2 t− t3 +

∫ tan t

t

x2 dx

= t tan2 t sec2 t− t3 +
1

3
tan3 t− 1

3
t3

HOMEWORK FOR DAY 41. Page 256, #1 parts a, b, and c, #2 parts a, b,
and c, #4 part a
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42 Section 5.2, Line Integrals

Objective. Students will evaluate line integrals in the plane.

A smooth curve C is a curve of the form x = φ(t), y = ψ(t) for h ≤ t ≤ k,

where x and y are continuous and have continuous derivatives.
C can have a direction, usually in increasing values of t.

Let A = (φ(t), ψ(t)), B = (φ(k), ψ(k)) so C can be a path from A to B.
If A = B, the C is a closed curve; if all points on C are distinct and A = B,

then C is a simple closed curve.
If f(x, y) is defined (at least) when (x, y) is on C, and if f represents

density or force, then the line integral

∫

C

f(x, y) ds = lim

n
∑

i=1

f(x∗i , y
∗
i )∆is

is the mass of the wire C, or the work done to move a particle along C. (See
page 271.) Above, s is the the parameter of length along the curve.

In practical terms, we separate x and y and compute
∫

C

f(x, y) dx and

∫

C

f(x, y) dy (42.1)

where the first integral is the mass of or work done by the x-component;

similarly for the second integral.

Theorem 42.1. If f(x, y) is continuous on C, then the integrals in Eq. 42.1

both exist and can be defined parametrically by

∫

C

f(x, y) dx =

∫ k

h

f(φ(t), ψ(t))φ′(t) dt

∫

C

f(x, y) dy =

∫ k

h

f(φ(t), ψ(t))ψ′(t) dt

The theorem implies that line integrals can be reduced to regular integrals.
C may not be smooth, but all results still hold as long as C is piecewise
smooth. Further, any parametrization of C may be used.
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Example 42.1. Let C be the path defined by y = (x−1)2 from (1, 0) to (2, 1).

Evaluate
∫

C

(x2 − y2) dx and
∫

C

(x2 − y2) dy.

We choose the parametrization x = t, y = (t− 1)2 for 1 ≤ t ≤ 2. Then

∫

C

(x2 − y2) dx =

∫ 2

1

[

t2 − (t− 1)4
]

dt =
32

15

∫

C

(x2 − y2) dy =

∫ 2

1

2(t− 1)
[

t2 − (t− 1)4
]

dt =
5

2

If we choose a different parametrization—say, x = t+1, y = t2 for 0 ≤ t ≤ 1—

then
∫

C

(x2 − y2) dx =

∫ 1

0

[

(t+ 1)2 − t4
]

dt =
32

15

∫

C

(x2 − y2) dy =

∫ 1

0

2t
[

(t+ 1)2 − t4
]

dt =
5

2
.

Note that if C is given by y = g(x) for a ≤ x ≤ b, then we may use x as
the “parameter.” Then we have

∫

C

f(x, y) dx =

∫ b

a

f(x, g(x)) dx

∫

C

f(x, y) dy =

∫ b

a

f(x, g(x))g′(x) dx

If C is given by x = G(y) for c ≤ y ≤ d, then we have similar equations.

Example 42.2. Evaluate
∫

C

(x2−y3) dy where C is the semicircle y =
√

1 − x2

from (1, 0) to (−1, 0).

We choose the parametrization x = cos t, y = sin t for 0 ≤ t ≤ π. Then
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the integral becomes
∫ π

0

(cos3 t− sin3 t) cos t dt =

∫ π

0

[

cos2 t− (cos t sin t)2 − sin3 t cos t
]

dt

=

∫ π

0

[

1

2
+

cos 2t

2
− sin2 2t

4
− sin3 t cos t

]

dt

=
t

2
+

sin 2t

4
− t

8
+

sin 4t

32
− sin4 t

4

∣

∣

∣

∣

π

0

=
π

2
− π

8
=

3π

8

If we had used x as the parameter, the integral becomes
∫ 1

−1

[

x3 − (1 − x2)3/2
] −x√

1 − x2
dx

which is clearly more difficult to evaluate.
In many situations, different functions determine x and y; i.e., f(x, y)

could be given by a vector function F = P (x, y)i + Q(x, y)j and the line
integral is then denoted by

∫

C

P (x, y) dx+Q(x, y) dy.

Example 42.3. Evaluate
∫

C

xy2 dx+x2y dy if C is the arc y = x2 from (0, 0)

to (−1, 1).

We have
∫

C

xy2 dx+ x2y dy =

∫ −1

0

(

xy2 + x2y
dy

dx

)

dx =

∫ −1

0

3x5 dx =
1

2
.

If C is a closed curve, a direction must be specified and we use the notation
∮

C

P dx+Q dy.

Example 42.4. Evaluate
∮

C

y2 dx+x2 dy where C is the triangle with vertices

(1, 0), (1, 1), (0, 0).
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We compute three integrals; one for each side of the triangle. The first is

from (0, 0) to (1, 0). Along this path, y = 0 and dy = 0, so y2 dx+ x2 dy = 0
which gives the first integral as zero. The second is from (1, 0) to (1, 1). Along
this leg, x = 1 and dx = 0 so y2 dx + x2 dy = dy. Hence,

∫ 1

0 dy = 1. The

third integral is from (1, 1) to (0, 0). Along this path, x = y and dx = dy, so
that y2 dx+ x2 dy = 2x2 dx and we have

∫ 0

1 2x2 dx = −2/3. Hence,
∮

C

y2 dx+ x2 dy = 0 + 1 − 2

3
=

1

3
.

Example 42.5. Evaluate
∫ (4,5)

(2,1) xy dx + x2 dy along a) the broken line from

(2, 1) to (4, 1) to (4, 5); b) the straight line from (2, 1) to (4, 5); and c) the
curve defined by x = 3t− 1, y = 3t2 − 2t for 1 ≤ t ≤ 5

3.

a) From (2, 1) to (4, 1), we have y = 1 and dy = 0. Then the integral along
this part is

∫ 4

2 x dx = 6. From (4, 1) to (4, 5), we have x = 4 and dx = 0.

Then the integral along this part is
∫ 5

1 16 dy = 64. Hence,
∫ (4,5)

(2,1)

xy dx+ x2 dy = 6 + 64 = 70.

b) The line from (2, 1) to (4, 5) is y = 2x− 3. Then, since dy = 2 dx, we
have
∫ (4,5)

(2,1)

xy dx+ x2 dy =

∫ 4

2

[x(2x− 3) + 2x2] dx =

∫ 4

2

(4x2 − 3x) dx =
170

3
.

c) We have dx = 3 dt and dy = (6t− 2) dt. Accordingly,
∫ (4,5)

(2,1)

xy dx+ x2 dy =

∫ 5/3

1

[3(3t− 1)(3t2 − 2t) + (3t− 1)2(6t− 2)] dt

=

∫ 5/3

1

(81t3 − 81t2 + 24t− 2) dt

=
81

4
t4 − 27t3 + 12t2 − 2t

∣

∣

∣

∣

5/3

1

=
625

4
− 125 +

100

3
− 10

3
− 81

4
+ 27 − 12 + 2 = 58

HOMEWORK FOR DAY 42. Page 278 #1, #2 parts a and b; Page 279 #3
parts a and c
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HOMEWORK ANSWERS. #2 a) We use y as the parameter.

∫ (0,1)

(0,−1)

y2 dx+ x2 dy =

∫ 1

−1

(

y2dx

dy
+ x2

)

dy

=

∫ 1

−1

(

−y3

√

1 − y2
+ 1 − y2

)

dy

Using parts on the rational term, with u = y2 and dv = −y/
√

1 − y2, gives

=
1

3

(

(y2 + 2)
√

1 − y2 − y3 + 3y
)

∣

∣

∣

∣

1

−1

=
1

3
(−1 + 3 − 1 + 3) =

4

3

#2 b) We use x as the parameter.

∫ (2,4)

(0,0)

y dx+ x dy =

∫ 2

0

(

y + x
dy

dx

)

dx =

∫ 2

0

3x2 dx = 8

#3 a) Along (−1,−1) to (1,−1), y = −1 and dy = 0. Then
∫ 1

−1 dx = 2.

Along (1,−1) to (1, 1), x = 1 and dx = 0; thus,
∫ 1

−1 y dy = 0. Along (1, 1) to

(−1, 1), y = 1 and dy = 0. Then
∫ −1

1 dx = −2. Along the last leg, we have

x = −1 and dx = 0, so
∫ −1

1 −y dy = 0. The total is 0.
#3 b) Along (0, 0) to (1, 0), y = dy = 0 and the integral is then 0. Along

(1, 0) to (1, 1), x = 1 and dx = 0; then
∫ 1

0 −y3 dy = −1/4. Along (1, 1) to
(0, 0), y = x and dx = dy so the integral is 0. The total is −1/4.
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43 Section 5.3, Integrals with Respect to Arc
Length

Objective. Students will compute line intgerals with respect to arc length.

Students will understand and apply basic properties of line integrals.

The basic line integral is arc length s =
∫ t

h

√

(

dx
dt

)2
+
(

dy
dt

)2

dt =
∫

C

ds

which represents the distance traveled on C.
If f is continuous on C, then

∫

C

f(x, y) dx =

∫ k

h

f(φ(t), ψ(t))
√

φ′(t)2 + ψ′(t)2 dt

is the integral of f with respect to arc length s. If s itself is the parameter,

then x = x(s), y = y(s) and

∫

C

f(x, y) ds =

∫ L

0

f(x(s), y(s)) ds.

If x is the parameter, then y = y(x) and

∫

C

f(x, y) ds =

∫ b

a

f(x, y(x))

√

1 +

(

dy

dx

)2

dx.

The basic line integral
∫

P dx + Q dy becomes
∫

C

(P cosα + Q sinα) ds

where α is the angle between the x-axis and a tangent vector in the direction

of increasing s.

Example 43.1. Evaluate
∫

C xy
2 ds where C is the curve x = cos t, y = sin t

for 0 ≤ t ≤ π
2 .

∫

C

xy2 ds =

∫ π/2

0

cos t sin2 t
√

sin2 t+ cos2 t dt =

∫ π/2

0

cos t sin2 t dt

= 1
3
sin3 t

∣

∣

π/2

0
= 1

3
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Example 43.2. Find
∫ (2,4)

(0,0) (x+ y) ds where C is the curve y = x2.

We use x as the parameter.
∫ 2

0

(x+ x2)
√

1 + 4x2 dx

=
1

8

∫ 2

0

8x
√

1 + 4x2 dx+ 2

∫ 2

0

x2
√

1
4 + x2 dx

=
1

12
(1 + 4x2)3/2 +

1

4

[

x
(

1
4 + 2x2

)

√

1
4 + x2 − 1

16
log

(

x+
√

1
4 + x2

)]∣

∣

∣

∣

2

0

=
1

12
(173/2 − 1) +

1

4

[

33
√

17

4
− 1

16
log

(

2 +

√
17

2

)

+
1

16
log

1

2

]

=
167

48

√
17 − 1

16
log
(

4 +
√

17
)

− 1

12
≈ 14.229

(The antiderivative of the second integral is found by using a combination of
parts and trigonometric substitution.)

Example 43.3. Find
∮

C

2xy ds if C is the upper semicircle x2 + y2 = 9.

We use t as the parameter by setting x = 3 cos t, y = 3 sin t for 0 ≤ t ≤ π.
Then

∫ π

0

18 sin t cos t
√

9 sin2 t+ 9 cos2 t dt

= 27

∫ π

0

2 sin t cos t dt = 27

∫ π

0

sin 2t dt

= −27

2
cos 2t

∣

∣

∣

∣

π

0

= 27

Properties of Line Integrals
Additivity of portions of curves; additivity of integrands; reversal of end-

points; constant multiplication.

We also have the following:
∫

C

ds = L = length of C (43.1)
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If |f(x, y)| ≤ M on C, then

∣

∣

∣

∣

∣

∣

∫

C

f(x, y) ds

∣

∣

∣

∣

∣

∣

≤ML (43.2)

If C is a simple closed curve, then

∮

C

x dy = −
∮

C

y dx = area enclosed by C. (43.3)

Example 43.4. Evaluate
∫

C ds if C is the straight line from the origin to
(3, 3).

This is simply the length of C; by the Pythagorean Theorem, this length
is 3

√
2.

Example 43.5. Evaluate
∮

C x dy if C is the ellipse defined by x = 3 cos t, y =
5 sin t.

By Eq. 43.3, this is simply the area of the region enclosed by C; the area
of the ellipse is 15π.

HOMEWORK FOR DAY 43. Page 279 #3 part b, #4
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HOMEWORK ANSWERS. #3 b) By Eq. 43.3, we have that the integral is

2
∮

C

y dx = −2π.

#4 a) We use the parametrization x = 2 cos t, y = 2 sin t for 0 ≤ t ≤ π.

∮

C

(x2 − y2) ds =

∫ 2π

0

(4 cos2 t− 4 sin2 t)
√

4 sin2 t+ 4 cos2 t dt

= 8

∫ 2π

0

(cos2 t− sin2 t) dt = 8

∫ 2π

0

cos 2t dt

= 4 sin 2t|2π
0 = 0

#4 b) From (0, 0) to (1, 1), the length of y = x is
√

2. Then

∫

C

x ds =

∫ 1

0

x
√

2 dx =

√
2

2
.

#4 c) This is just standard arc length; thus,

∫

C

ds =

∫ 1

0

√

1 + 4x2 dx

Let x = 1
2
tan t to get

=
1

2

∫ arctan2

0

√

1 + tan2 t sec2 t dt

=
1

2

∫ arctan2

0

sec3 t dt

By parts, we have

=
1

4

[

log | sec t+ tan t| + sec t tan t
]

∣

∣

∣

∣

arctan2

0

=
1

4
log
(√

5 + 2
)

+

√
5

2
≈ 1.479
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44 Section 5.4, Line Integrals as Integrals of
Vectors

Objective. Students will evaluate line integrals of vector-valued functions.

If P (x, y) and Q(x, y) are components of the vector u = P i +Qj, then we
define uT as the component of u in the direction of the unit tangent T:

uT = u · T = P
dx

ds
+Q

dy

ds
,

so then
∫

C

uT ds =

∫

C

P dx+Q dy.

We can also define it directly by using the differential vector dr = dxi+dyj:
∫

C

uT ds =

∫

C

P dx+Q dy =

∫

C

u · dr.

If C is represented parametrically in terms of t, then
∫

C

u · dr =

∫ k

h

(

P
dx

dt
+Q

dy

dt

)

dt =

∫ k

h

(

u · dr
dt

)

dt.

Application to Mechanics
If u = P i + Qj is a force field, then the line integral represents the work

done by this force in moving the particle along C. Further, if r is the position

vector of a particle of mass m moving on C and u is the force applied, then

u = m
d2r

dt2
= m

dv

dt

by Newton’s Second Law, where v is the velocity of the particle along C. If
we denote ||v|| = v, then

∫

C

u · dr =

∫ k

h

(

u · dr
dt

)

dt =

∫ k

h

(

m
dv

dt
· v
)

dt

=

∫ k

h

d

dt

(

1

2
mv · v

)

dt =

∫ k

h

d

dt

(

1

2
mv2

)

dt =
1

2
mv2

∣

∣

∣

∣

k

h

;

in other words, the work done equals the gain in kinetic energy.
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Example 44.1. Evaluate
∫

C

vT ds if v = x2yi + (y− x)j and if C is the curve

y = (x− 1)2 from (0, 1) to (1, 0).

We use t as the parameter for the representation x = t + 1, y = t2 for
−1 ≤ t ≤ 0.

∫

C

vT ds =

∫

C

x2y dx+ (y − x) dy

=

∫ 0

−1

[

(t+ 1)2t2 + (t2 − t− 1)(2t)
]

dt

=

∫ 0

−1

(t4 + 4t3 − t2 − 2t) dt

=
t5

5
+ t4 − t3

3
− t2

∣

∣

∣

∣

0

−1

=
1

5
− 1 − 1

3
+ 1 = − 2

15

HOMEWORK FOR DAY 44. Page 286 #1
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HOMEWORK ANSWERS. #1

a)

∫

C

vT ds =

∫ 1

0

(x2 + x2) dx+ 2xx dy

=

∫ 1

0

4x2 dx =
4

3
x3

∣

∣

∣

∣

1

0

=
4

3

b)

∫

C

vT ds =

∫ 1

0

(x2 + x4) dx+ 2xx2 dy

=

∫ 1

0

(5x4 + x2) dx = x5 +
1

3
x3

∣

∣

∣

∣

1

0

=
4

3

c) Along (0, 0) to (1, 0), y = dy = 0; so
∫ 1

0 x
2 dx = 1

3
. Along (1, 0) to (1, 1),

x = 1 and dx = 0; so
∫ 1

0 2y dy = 1. Thus,
∫

C

vT ds = 4
3 .
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45 Section 5.5, Green’s Theorem

Objective. Students will evaluate line integrals of closed curves by applying
Green’s Theorem.

Theorem 45.1 (Green’s Theorem). Let D be a domain of the xy-plane and
let C be a piecewise smooth closed curve in D, with interior also in D. Let
P (x, y) and Q(x, y) be functions defined and continuous with continuous first

partial derivatives in D. Then
∮

C

P (x, y) dx+Q(x, y) dy =

∫∫

R

(

∂Q

∂x
− ∂P

∂y

)

dx dy.

Proof. We prove the case where R can be represented as

a ≤ x ≤ b, f1(x) ≤ y ≤ f2(x)

or
c ≤ y ≤ d, g1(y) ≤ x ≤ g2(y).

—[[Larson 113]]— We can write:
∮

R

∂P

∂y
dx dy =

∫ b

a

∫ f2

f1

∂P

∂y
dy dx

=

∫ b

a

[P (x, f2) − P (x, f1)] dx

= −
∫ a

b

P (x, f2) dx−
∫ b

a

P (x, f1) dx

= −
∮

C

P (x, y) dx

Similarly,
∫∫

R

∂Q

∂x
dx dy =

∮

C

Q(x, y) dx dy.

Hence,
∮

C

P (x, y) dx+Q(x, y) dy =

∫∫

R

(

∂Q

∂x
− ∂P

∂y

)

dx dy.
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If R can be decomposed into finitely many such regions Ri, with Ci as the

corresponding boundaries, Green’s Theorem still holds. Any other type of
region can be approximated by such regions and a limiting process employed.

Example 45.1. Let C be the circle x2+y2 = 1. Evaluate
∮

C xy dx+(y2−x) dy.
We have

∮

C

xy dx+ (y2 − x) dy =

∫∫

R

(−1 − x) dx dy

= −
∫ 1

−1

∫

√
1−x2

−
√

1−x2

(x+ 1) dy dx

= −
∫ 1

−1

2(x+ 1)
√

1 − x2 dx

= −2

[

−1

3
(1 − x2)3/2

]1

−1

− 2
(π

2

)

= −π

Example 45.2. Let C be the circle x2 + y2 = r2. Evaluate
∮

C(2x + y) dx +

(x+ 3y) dy.

We have
∮

C

(2x+ y) dx+ (x+ 3y) dy =

∫∫

R

(1 − 1) dx dy = 0.

Example 45.3. Let C be the circle x2 + y2 = r2. Evaluate
∮

C(2x− y) dx +
(x+ 3y) dy.

We have
∮

C

(2x− y) dx+ (x+ 3y) dy =

∫∫

R

(1 + 1) dx dy

= 2

∫∫

R

dx dy = 2πr2

since the double integral is the area of R.
So when ∂Q

∂x − ∂P
∂y is constant, the line integral is a multiple of the area of

R.
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Example 45.4. Let C be a curve in the xy-plane. Then
∮

C

(

1

xy
dx+

x

x2 + y2
dy

)

cannot be evaluated using Green’s Theorem since P and Q are discontinuous

at the origin.

Example 45.5. Let C be the unit square. Evalute
∮

C(x2−y2) dx+(x+y) dy.

We have
∮

C

(x2 − y2) dx+ (x+ y) dy =

∫∫

R

(1 + 2y) dx dy

=

∫∫

R

dx dy + 2

∫∫

R

y dx dy

= 1 + 2y = 1 + 2(1
2
) = 2

Vector Interpretation of Green’s Theorem

We know that if u = P i + Qj, then
∮

C P dx + Q dy =
∮

C uT ds. Notice

that the z-component of curlz u = ∂Q
∂x − ∂P

∂y , so we can write
∮

C P dx+Q dy =
∫∫

R curlz u dx dy.

This can also be interpreted differently. Let v = Qi−P j and n = dy
ds

i− dx
ds

j

be the outer normal on C. Then
∮

C

P dx+Q dy =

∮

C

v · n ds =

∮

C

vn ds =

∫∫

R

div v dx dy.

Example 45.6. Let v = (x+y2)i− (x3−y)j and C be the ellipse x2

4 + y2

9 = 1.
Evaluate

∮

C vn ds.

We have
∮

C

vn ds =

∫∫

R

(1 + 1) dx dy

= 2

∫∫

R

dx dy = 2 · 2 · 3 · π = 12π

HOMEWORK FOR DAY 45. Page 287 #5 parts a, b, c, d, e, and h

DR. C. GARNER, RMSST, MULTIVARIABLE CALCULUS NOTES, 2006-2007 Page 157



Day 45

HOMEWORK ANSWERS. #5

a)
∮

C ay dx + bx dy =
∫∫

R(b− a) dx dy = (b− a)A where A is the area of
R.

b) From (0, 0) to (1, 0), y = dy = 0; so the integral becomes 0. From

(1, 0) to (1, π/2), x = 1, dx = 0; so
∮

C e cos y dy = 0. From (1, π/2)
to (0, π/2), y = π/2, dy = 0; so

∮

C e
x dx = 0. From (0, π/2) to (0, 0),

x = dx = 0; so
∮

C cos y dy = 0. Hence the total integral us 0.

c) By Green’s Theorem, the integral becomes

∫∫

R

(3x2 + 3y2) dx dy = 3

∫ 1

−1

∫

√
1−x2

−
√

1−x2

(x2 + y2) dy dx

=

∫ 1

−1

(3x2y + y3)
∣

∣

√
1−x2

−
√

1−x2 dx

=

∫ 1

−1

2(2x2 + 1)
√

1 − x2 dx

=

∫ 1

−1

4x2
√

1 − x2 dx+ 2

∫ 1

−1

√

1 − x2 dx

Using the substitution x = sin θ, the first integrand becomes sin2 2θ dθ
from θ = 0 to θ = π. The second integral is the area of a semi-circle.

Hence,

=
1

2
θ − 1

8
sin 4θ

∣

∣

∣

∣

π

0

+ 2
(π

2

)

=
π

2
+ π =

3

2
π

d) u = ∇(x2y) = 2xyi + x2j. So
∮

C uT ds =
∫∫

R(2x− 2x) dx dy = 0.

e)
∮

C vn ds =
∫∫

R(2x− 2x) dx dy = 0.

h)
∮

C f(x) dx+ g(y) dy = 0.
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46 Section 5.6A, Independence of Path

Objective. Students will evaluate line integrals that are independent of path
by evaluating the exact differential. Students will identify exact differentials

and conservative vector fields.

Example 46.1. Evaluate
∫ (1,1)

(0,0) y dx + (x + 2y) dy where C is a) the broken

line from (0, 0) to (2, 1) to (1, 1); b) the parabolic arc y = x2; and c) the

straight line y = x.

a) Along the line from (0, 0) to (2, 1), we have y = 1
2x so that dy = 1

2dx.

Then this part is
∫ 2

0 [1
2
x+ 1

2
(x+x)] dx = 3

4
x2|20 = 3. Along the line from (2, 1)

to (1, 1), we have y = 1 and dy = 0. Then this part is
∫ 1

2 dx = x|12 = −1.
Hence,

∫ (1,1)

(0,0)

y dx+ (x+ 2y) dy = 3 + (−1) = 2.

b) Since dy = 2x dx, we have

∫ (1,1)

(0,0)

y dx+ (x+ 2y) dy =

∫ 1

0

[x2 + 2x(x+ 2x2)] dx =
1

3
x3 +

2

3
x3 + x4

∣

∣

∣

∣

1

0

= 2.

c) Here, dy = dx. Thus,
∫ (1,1)

(0,0)

y dx+ (x+ 2y) dy =

∫ 1

0

4x dx = 2x2
∣

∣

1

0
= 2.

The suspicion is that it does not matter what path we take. What property
does this integrand have that makes the path irrelevant?

If P (x, y) and Q(x, y) are defined and continuous in a domain D, then
∫

P dx+Q dy is independent of path if, for every pair of endpoints A and B

in D,
∫ B

A P dx+Q dy is the same for all paths from A to B.

Theorem 46.1. The integral
∫

P dx + Q dy is independent of path in D iff

there is a function F ∈ D such that ∂F/∂x = P and ∂F/∂y = Q.

Proof. Suppose the intergal is independent of path in D. Then for some fixed
point (x0, y0), define F (x, y) as

F (x, y) =

∫ (x,y)

(x0,y0)

P dx+Q dy,
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where the path is arbitrary from (x0, y0) to (x, y). Since the integral is inde-

pendent of path, the function F depends only on (x, y).
For a particular (x, y) in D, choose (x1, y) so that x 6= x1 and so that the

line segment from x1 to x is in D. Then, because of independence of path,

F (x, y) =

∫ (x1,y)

(x0,y0)

(P dx+Q dy) +

∫ (x,y)

(x1,y)

(P dx+Q dy).

Thus, y is restricted to a constant value, and F (x, y) is now considered a
function of x. Thus, the first integral is not dependent on x, and has a

constant value k; while the second can be integrated along the line segment.
Hence,

F (x, y) = k +

∫ x

x1

P (x, y) dx

or, with dummy x replaced with t,

F (x, y) = k +

∫ x

x1

P (t, y) dt.

By the Fundamental Theorem, ∂F/∂x = P (x, y). Similarly, ∂F/∂y = Q.
Now, assume there is a function F ∈ D such that ∂F/∂x = P and

∂F/∂y = Q. Then, in terms of parameter t,

∫ (x2,y2)

(x1,y1)

P dx+Q dy =

∫ t2

t1

(

∂F

∂x

dx

dt
+
∂F

∂y

dy

dt

)

dt

=

∫ t2

t1

dF

dt
dt = F |t2t1

= F (x2, y2) − F (x2, y1)

or,

∫ B

A

P dx+Q dy =

∫ B

A

dF = F (B) − F (A)

Implications of Theorem 46.1.
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I) This gives us an “antiderivative” of a multivariable integral. Further, the

theorem implies that
∫

P dx+Q dy is independent of path iff P dx+Q dy
is an exact differential.

II) F is constant in D iff F (B) = F (A) for every two points A,B ∈ D.

III) In applications, such as thermodynamics, partial derivatives P = ∂F/∂x
and Q = ∂F/∂y of functions representing energy and entropy are the

measured functions, rather than the functions themselves. Then the
function F (x, y) in the proof of the theorem can be used to determine

values of F at any point.

IV) The function F must also be defined and continuous in a domain con-
taining the path; a function such as arctan(y/x) is many-valued, and so

is useless for the theorem.

Example 46.2. Evaluate
∫ (3,7)

(1,1) y dx+ x dy.

We use the fact that y dx+ x dy is an exact differential to write
∫ (3,7)

(1,1)

y dx+ x dy =

∫ (3,7)

(1,1)

d(xy) = xy
∣

∣

(3,7)

(1,1)
= 21 − 1 = 20.

Theorem 46.2.
∫

P dx + Q dy is independent of path in D iff
∮

C P dx +
Q dy = 0 on every simple closed path in D.

Since P dx + Q dy can be interpreted as a vector F = P i + Qj, then F

defines a vector field. If
∮

C F dr =
∮

C P dx+Q dy = 0 then F determines a
conservative vector field ; so-called since all work/energy that is used equals

the gain in work/energy.

Example 46.3. Evaluate
∮

C y
2 cosxy dx+(sinxy+xy cosxy) dy on the ellipse

9x2 + y2 = 9.

Since P dx+Q dy = dF where F = y sin xy, we have that the integral is
zero by the theorem above.

Example 46.4. Evaluate the integral in the previous example on any path C
from (0, 0) to (3

2
, 3π).

Since P dx+Q dy is exact, we have
∫ (3/2,3π)

(0,0)

d(y sin xy) = y sin xy
∣

∣

(3/2,3π)

(0,0)
= 3π.

HOMEWORK FOR DAY 46. Page 300 #1
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HOMEWORK ANSWERS. #1

a) F = x2y, so the integral is x2y
∣

∣

(1,1)

(0,0)
= 1.

b) F = exy, so the integral is exy
∣

∣

(π,0)

(0,0)
= 1.

c) F =
−1

√

x2 + y2
, so the integral is

−1
√

x2 + y2

∣

∣

∣

∣

∣

(e2π,0)

(1,0)

=
−1

e2π
+ 1 = 1 − e−2π.
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47 Sections 5.6B and 5.7, Simply and Multiply
Connected Domains

Objective. Students will determine whether a given line integral is indepen-

dent of path. Students will prove that the value of a path independent line
integral on a multiply connected domain is either zero or has the same value

for every path.

Determination of path independence requires simply connected domains.
A simply connected domain is a domain with no “holes.”

Theorem 47.1 (Test for Independence of Path). Let D be a simply connected

domain and let P (x, y) and Q(x, y) have continuous partial derivatives in D.
∫

P dx+Q dy is independent of path iff ∂P/∂y = ∂Q/∂x.

Proof. Assume
∫

P dx + Q dy. Then by Theorem 46.1, P = ∂F/∂x and

Q = ∂F/∂y. Since P and Q have continuous derivatives in D,

∂P

∂y
=

∂2F

∂y∂x
=

∂2F

∂x∂y
=
∂Q

∂x
.

Now assume ∂P/∂y = ∂Q/∂x. We choose any simple closed curve C and
apply Green’s Theorem:

∮

C

P dx+Q dy =

∫∫

R

(

∂Q

∂x
− ∂P

∂y

)

dx dy = 0.

Green’s Theorem is applicable since D is simply connected so that R is in D
and both ∂P/∂y and ∂Q/∂x are continuous in R. Since C was any closed
simple curve, we have that the line integral is zero for every such curve; thus,

from Theorem 46.2,
∫

P dx+Q dy is independent of path in D.

Example 47.1. Evaluate
∫

C(3x2 + y) dx + x dy on y = tanx from (0, 0) to
(π/4, 1).

Since ∂P
∂y = 1 = ∂Q

∂x , the integral is independent of path. Thus there is

some F such that dF = P dx+Q dy. This F is F = x3 + xy; hence,

x3 + xy
∣

∣

(π/4,1)

(0,0)
=
π3

64
+
π

4
=
π3 + 16π

64

To find this function F , we use a vector interpretation:
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Theorem 47.2 (Restatement of Theorem 47.1).
∫

P dx+Q dy is indepen-

dent of path iff P i +Qj = ∇F . Thus,
∫ B

A

P dx+Q dy =

∫ B

A

∇F · dr = F (B) − F (A)

Moreover, if u = P i +Qj, we have u = ∇F iff curlu = 0.

Example 47.2. Evaluate
∫

2xy3 dx+ 3x2y2 dy from (1, 2) to (3,−2).

Since ∂
∂y(2xy

3) = ∂
∂x(3x2y2), this integral is independent of path. Hence,

we can integrate along any path, say the broken line with from (0, 0) to (x, 0)

to (x, y). Along the first segment, dy = y = 0 and the integral is 0; along
the second, dx = 0 and x is constant, giving

∫ y

0 3x2y2 dy = x2y3 = F (x, y).

Hence,
∫ (3,−2)

(1,2)

2xy3 dx+ 3x2y2 dy = x2y3
∣

∣

(3,−2)

(1,2)
= −80.

Example 47.3. See Example 2 on page 295.

Example 47.4. Evaluate
∫ (−1,0)

(1,0) (2xy−1) dx+(x2 +6y) dy on the semi-circle

y =
√

1 − x2.

Since ∂P/∂y = ∂Q/∂x, the integral is independent of path; F = x2y +

3y2 − x and we calculate F
∣

∣

(−1,0)

(1,0)
= 2.

Example 47.5. Evaluate
∮

[sinxy+ xy cosxy] dx+ x2 cosxy dy on the circle
x2 + y2 = 1.

Since ∂P/∂y = ∂Q/∂x, the integral is independent of path and so is zero.

Theorem 47.3. Let P and Q have continuous partials in a multiply connected

domain D. If R is a closed region in D whose boundary consists of finitely
many simple closed curves Ci, then

n
∑

i=1

∮

Ci

P dx+Q dy =

∫∫

R

(

∂Q

∂x
− ∂P

∂y

)

dx dy.

Moreover, this double integral is zero if ∂P/∂y = ∂Q/∂x.

As a result of this theorem, we have that either
∮

C P dx + Q dy is zero
when C does not include a “hole” and is a nonzero constant value otherwise.
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Example 47.6. Evaluate

∮

y3 dx− xy2 dy

(x2 + y2)2
around the ellipse 2x2 +3y2 = 1.

Since we have ∂P/∂y = ∂Q/∂x except at the origin, we may use any

closed curve to evaluate the integral; we choose x2 + y2 = 1 and then use the
parametrization x = cos t, y = sin t. Hence,

∮

y3 dx− xy2 dy =

∫ 2π

0

(− sin4 t− cos2 t sin2 t) dt

= −
∫ 2π

0

sin2 t dt = −π

Hence, the integral has the the value −π around the ellipse as well.

HOMEWORK FOR DAY 47. Page 300 #2 parts b and d, Page 301 #3 parts b
and d, #4, #6 part a, #7
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HOMEWORK ANSWERS. #2 b) This integral is independent of path; F =

x3/y so F
∣

∣

(1,3)

(0,2)
= 1

3.

#2 d) This integral is independent of path; F = tanx tan y so F
∣

∣

(π/4,π/4)

(0,0)
=

1.

#3 b) This integral is independent of path; F = − arctan
(

y
x−1

)

so the
integral is −2π.

#3 d) We write
∮

xy6 dx + 3x2y5 dy +
∮

6x dy so that, since the first
integral is independent of path and so is zero, we only need consider the

second integral, which is 6A where A is the area of the ellipse. Hence, the
integral is 12π.

#4 From (1, 0) to (2, 2), we move through an angle of π/4; so all answers
are of the form π/4 + 2πk.

#6 a) This integral is independent of path; F = x2y − 1
3y

3 so F
∣

∣

(x,y)

(1,1)
=

x2y − 1
3y

3 − 1 + 1
3 = x2y − 1

3(y
3 + 2).

#7 Since the integral is independent of path, we use x2 + y2 = 1 as C.
Then with the parametrization x = cos t, y = sin t we have

∫ 2π

0

(− cos2 t sin2 t− cos4 t) dt = −
∫ 2π

0

cos2 t = −π.
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48 Sections 5.8 and 5.9, Line Integrals, Sur-
faces, and Orientability in Space

Objective. Students will evaluate line integrals in space. Students will use

normal and tangent vectors to describe surfaces in space and their orientabil-
ity.

Basic definitions of line integrals still apply to those in space.
∫

C X dx+Y dy+Z dz is a line integral in space. The vector interpretation

is
∫

C u · dr =
∫

C uT ds where u = Xi + Y j + Zk and T is the unit tangent
vector.

Example 48.1. Evaluate
∫ (1,0,2π)

(1,0,0) z dx + y dy + x dz where C is the curve
defined by x = cos t, y = sin t, z = t for 0 ≤ t ≤ 2π.

We use the parametrization of C to find the integral:
∫ (1,0,2π)

(1,0,0)

z dx+ y dy + x dz =

∫ 2π

0

(−t sin t+ sin t cos t+ cos t) dt

= t cos t− sin t− 1

4
cos 2t+ sin t

∣

∣

∣

∣

2π

0

= 2π

Example 48.2. Evaluate
∫

C yz dx + xz dy + xy dz where C is the “twisted
cubic” defined by x = t, y = t2, z = t3 for 0 ≤ t ≤ 2.

We have dx = dt, dy = 2t dt, dz = 3t2 dt. Thus,
∫

C

yz dx+ xz dy + xy dz =

∫ 2

0

t5 dt+ 2t5 dt+ 3t5 dt

=

∫ 2

0

6t5 dt = t6|20 = 64.

Surfaces can be described by any of

z = f(x, y), F (x, y, z) = 0, x = f(u, v), y = g(u, v), z = h(u, v)

For a surface z = f(x, y), we have the area of S as

∫∫

Rxy

√

1 +

(

∂z

∂x

)2

+

(

∂z

∂y

)2

dx dy.
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As we have the arc length element ds, we have the surface area element dσ.

For a surface defined parametrically, we have
∫∫

Ruv

√
EG− F 2 du dv.

We assume surfaces are piecewise smooth. We also define a “direction”—
we choose normal n at each point so n varies continuously on S (one can then

define a positive direction for angle measure). —[[Larson 114, 116]]—
Choose T in the direction chosen and form an inner normal N so N always

points to the left of the boundary C of the surface. Then we have an orienta-
tion. Not all surfaces have an orientation; i.e., the Möbius strip is one-sided

and so is not orientable. —[[Thomas 13.46]]—

HOMEWORK FOR DAY 48. Page 312 #1 parts a, b, d, and e
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HOMEWORK ANSWERS. #1

a) The integral becomes

∫ 2π

0

(−t sin t+ cos2 t+ sin t) dt = t cos t− sin t+
1

2
t+

1

4
sin 2t− cos t

∣

∣

∣

∣

2π

0

= 3π

b) Since the path is the straight line, we find v = i + 3j + k as the vector

along the line; thus the line has parametrization x = z = 1 + t, y = 3t
for 0 ≤ t ≤ 1. Thus, the integral is

∫ 1

0

[

(1 + t)2 − 3(1 + t)2 + 9t2
]

dt =

∫ 1

0

(−2t2 − 4t− 2 + 9t2) dt

=
7

3
t3 − 2t2 − 2t

∣

∣

∣

∣

1

0

= −5

3

d) The integral becomes

∫ 2π

0

(−4 sin3 t cos t+ 4 cos3 t sin t) dt = − sin4 t− cos4 t
∣

∣

2π

0
= 0

e) We compute curlv = −2zi − 2xj− 2yk and the integral becomes

∫ 1

0

(

−4(1 + t3) − 4t(2t+ 1) − 2t2(3t2)
)

dt

=

∫ 1

0

(−6t4 − 4t3 − 8t2 − 4t− 4) dt

= −6

5
t5 − t4 − 8

3
t3 − 2t2 − 4t

∣

∣

∣

∣

1

0

= −163

15
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49 Section 5.10, Surface Integrals

Objective. Students will evaluate surface integrals of functions given in stan-
dard and vector forms.

Let S be smooth surface and H(x, y, z) be defined and continuous on S.
Then the surface integral is analogous to the line integral; i.e.,

∫∫

S

H dσ = lim
n→∞

n
∑

i=1

H∆iσ

where ∆iσ is the area of the ith piece. Note that dσ is a surface area element,
similar to ds for the arc length element. Hence,

dσ =

√

1 +

(

∂z

∂x

)2

+

(

∂z

∂y

)2

dx dy

Thus if S is of the form z = f(x, y) we have the double integral

∫∫

S

H dσ =

∫∫

Rxy

H(x, y, f(x, y))

√

1 +

(

∂z

∂x

)2

+

(

∂z

∂y

)2

dx dy

Example 49.1. Evaluate
∫∫

S x
2z dσ where S is the portion of the cone z2 =

x2 + y2 that lies between the planes z = 1 and z = 4.

We first compute the partials. We have

∂z

∂x
=

x
√

x2 + y2
, and

∂z

∂y
=

y
√

x2 + y2
.

Thus,
√

1 +

(

∂z

∂x

)2

+

(

∂z

∂y

)2

=

√

1 +
x2

x2 + y2
+

y2

x2 + y2
=

√
2

and the integral becomes
∫∫

S

x2z dσ =
√

2

∫∫

Rxy

x2
√

x2 + y2 dx dy.
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Now we use polar to integrate. We note that 0 ≤ z ≤ 4 implies 0 ≤ r ≤ 4,

and that is the Jacobian is r.

=
√

2

∫ 2π

0

∫ 4

1

r(r2 cos2 θ)r dr dθ

=
√

2

∫ 2π

0

1

5
r5 cos2 θ

∣

∣

∣

∣

4

1

dθ

=
1023

√
2

5

∫ 2π

0

cos2 θ dθ

=
1023

√
2

5
(π) ≈ 909

If S is parametric, then we have
∫∫

S

Hdσ =

∫∫

Ruv

H
(

f(u, v), g(u, v), h(u, v)
)

√

EG− F 2 du dv

In either case, we have a form similar to
∫

X dx + Y dy + Z dz for line
integrals: with continuous unit normal n = cosαi + cosβj + cos γk and

continuous vector function v = Li +Mj +Nk defined on S, we have
∫∫

S

v · n dσ =

∫∫

S

(L cosα+M cosβ +N cos γ) dσ

=

∫∫

S

L dy dz +M dz dx+N dx dy

as the integral over the surface.

Theorem 49.1. The evaluation of a surface integral is given by the following.

I) If S is given in the form z = f(x, y) with normal vector n, then
∫∫

S

L dy dz+M dz dx+N dx dy = ±
∫∫

Rxy

(

−L∂z
∂x

−M
∂z

∂y
+N

)

dx dy

where the sign is used when n is the upper/lower normal.
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II) If S is given by x = f(u, v), y = g(u, v), z = h(u, v) with normal vector

n, then
∫∫

S

L dy dz +M dz dx+N dx dy

= ±
∫∫

Ruv

[

L
∂(y, z)

∂(u, v)
+M

∂(z, x)

∂(u, v)
+N

∂(x, y)

∂(u, v)

]

du dv

where the sign of n is given by n =
Pu ×Pv

|Pu ×Pv|
where Pu = xui+yuj+zuk

and Pv = xvi + yvj + zvk.

Proof. We prove the first case. For a surface z = f(x, y), we have the tangent

plane is z − z1 = ∂z
∂x(x− x1) + ∂z

∂y(y − y1) and hence that the unit normal is

n = ±
−∂z

∂xi − ∂z
∂y j + k

√

1 +
(

∂z
∂x

)2
+
(

∂z
∂y

)2
,

with the sign according to upper or lower normal. Therefore,
∫∫

S

L dy dz +M dz dx+N dx dy

=

∫∫

S

[

(Li +Mj +Nk) · n
]

dσ

= ±
∫∫

S

−L ∂z
∂xi −M ∂z

∂yj +Nk
√

1 +
(

∂z
∂x

)2
+
(

∂z
∂y

)2
dσ

= ±
∫∫

Rxy

(

−L∂z
∂x

−M
∂z

∂y
+N

)

dx dy

Example 49.2. Evaluate
∫∫

S x dy dz + y dz dx + z dx dy for S as the

hemisphere z =
√

1 − x2 − y2, x2 + y2 ≤ 1 and n is the upper normal.
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∫∫

S

x dy dz + y dz dx+ z dx dy

=

∫∫

R

[

−x
(

−x
√

1 − x2 − y2

)

− y

(

−y
√

1 − x2 − y2

)

+
√

1 − x2 − y2

]

dx dy

=

∫ 1

−1

∫

√
1−x2

−
√

1−x2

1
√

1 − x2 − y2
dx dy

=

∫ 1

−1

arcsin
y√

1 − x2

∣

∣

∣

∣

√
1−x2

−
√

1−x2

dx =

∫ 1

−1

π dx = 2π

Example 49.3. Evaluate the above parametrically using x = sinu cos v, y =
sin u sin v, z = cosu.

First, we form the Jacobians:
∣

∣

∣

∣

cosu sin v sin u cos v
− sinu 0

∣

∣

∣

∣

= sin2 u cos v

∣

∣

∣

∣

− sin u 0
cosu cos v − sin u sin v

∣

∣

∣

∣

= sin2 u sin v

∣

∣

∣

∣

cosu cos v − sin u sin v
cosu sin v sin u cos v

∣

∣

∣

∣

= cosu sinu cos2 v + cosu sinu sin2 v

= cosu sinu

Then we have
∫∫

S

x dy dz + y dz dx+ z dx dy

=

∫∫

R

[

sinu cos v(sin2 u cos v) + sinu sin v(sin2 u sin v)

+ cosu(cosu sinu)
]

du dv

=

∫∫

R

[

sin3 u cos2 v + sin3 u sin2 v + cos2 u sin u
]

du dv

=

∫ π

0

∫ π

0

sinu du dv =

∫ π

0

− cosu
∣

∣

π

0
dv =

∫ π

0

2 dv = 2π
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The surface integral can also be defined similarly to the vector line integral
∫

u · dr. We use a differential area vector:

dσ = n dσ = cosα dσi + cosβ dσj + cos γ dσk

Thus,
∫∫

S

L dy dz +M dz dx+N dx dy =

∫∫

S

v · n dσ =

∫∫

S

v · dσ.

Example 49.4. Evaluate
∫∫

S w ·n dσ if w = 2yzi+2xzj+xyk on the surface

z = 1 − x2 − y2, x2 + y2 ≤ 1, and n is the upper normal.

∫∫

S

w · n dσ

=

∫∫

S

2yz dy dz + 2xz dz dx+ xy2 dx dy

=

∫∫

S

(

−2yz(−2x) − 2xz(−2y) + xy2
)

dx dy

=

∫∫

S

(

4xy(1 − x2 − y2) + 4xy(1 − x2 − y2) + xy2
)

dx dy

=

∫ 1

−1

∫

√
1−x2

−
√

1−x2

(

8xy − 8x3y − 8xy3 + xy2
)

dy dx

=

∫ 1

−1

(

4xy2 − 4x3y2 − 2xy4 +
xy3

3

)∣

∣

∣

∣

√
1−x2

−
√

1−x2

dx

=

∫ 1

−1

2

3
x(1 − x2)3/2 dx = 0

HOMEWORK FOR DAY 49. Page 313 #5 parts a, b, and d, #6 part b, #7
part a
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HOMEWORK ANSWERS. #5 a) A normal vector to the surface is n = i+j+k.

The plane is then x−1+y+z = 0 or z = 1−x−y, for x, y ≥ 0 and x+y ≤ 1.
Hence,

∫∫

S

x dy dz + y dz dx+ z dx dy

=

∫∫

S

(−x(−1) − y(−1) + 1 − x− y) dx dy

=

∫ 1

0

∫ 1−x

0

dy dx

=

∫ 1

0

(1 − x) dx =
1

2

#5 b)
∫∫

S

dy dz + dz dx+ dx dy

=

∫∫

S

(

x
√

1 − x2 − y2
+

y
√

1 − x2 − y2
+ 1

)

dx dy

=

∫ 1

−1

∫

√
1−x2

−
√

1−x2

(

x/
√

1 − x2

√

1 − y2/(1 − x2)
+

y
√

1 − x2 − y2
+ 1

)

dx dy

=

∫ 1

−1

(

x arcsin
y√

1 − x2
−
√

1 − x2 − y2 + y

)
∣

∣

∣

∣

√
1−x2

−
√

1−x2

dx

=

∫ 1

−1

(

xπ + 2
√

1 − x2
)

dx

= π

#6 b) The Jacobians are the same as from the example above, so the

DR. C. GARNER, RMSST, MULTIVARIABLE CALCULUS NOTES, 2006-2007 Page 175



Day 49

integral is
∫∫

S

[

sin2 u cos v + sin2 u sin v + cosu sinu
]

du dv

=

∫ π

0

∫ π

0

[

sin2 u(cos v + sin v) + cosu sinu
]

du dv

=

∫ π

0

∫ π

0

[(

1

2
− 1

2
cos 2u

)

(cos v + sin v) +
1

2
sin 2u

]

du dv

=

∫ π

0

[(

1

2
u− 1

4
sin 2u

)

(cos v + sin v) − 1

4
cos 2u

]
∣

∣

∣

∣

π

0

dv

=

∫ π

0

π

2
(cos v + sin v) dv

= π

#7 a)
∫∫

S

xy2z dy dz − 2x3 dz dx+ yz2 dx dy

=

∫∫

S

(

−xy2z(−2x) + 2x3(−2y) + yz2
)

dx dy

=

∫∫

S

(

2x2y2(1 − x2 − y2) − 4x3y + y(1 − x2 − y2)2
)

dx dy

=

∫ 1

−1

∫

√
1−x2

−
√

1−x2

(2x2y2 − 2x4y2 − 2x2y4 + y(1 − x2 − y2)2) dy dx

=

∫ 1

−1

(

2

3
x2y3 − 2

3
x4y3 − 2

5
x2y5 − 2x3y2 − 1

6
(1 − x2 − y2)3

)
∣

∣

∣

∣

√
1−x2

−
√

1−x2

dx

=

∫ 1

−1

(

4

3
(1 − x2)3/2(x2 − x4) − 4

5
x2(1 − x2)5/2

)

dx

=

∫ 1

−1

8

15
x2(1 − x2)5/2 dx =

π

48
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50 Section 5.11, Gauss’ Divergence Theorem

Objective. Students will evaluate surface integrals by applying Gauss’ Di-
vergence Theorem.

Gauss’ Divergence Theorem allows reduction of a surface integral to a
triple integral.

Theorem 50.1 (Gauss’ Divergence Theorem). Let v = Li + Mj + Nk be
a vector field in a domain D of space; let L, M , N be continuous and have

continuous derivatives in D. Let S ⊆ D be a piecewise smooth surface that
forms the complete boundary of a bounded closed region R ⊆ D. Let n be the
outer normal of S. Then

∫∫

S

vn dσ =

∫∫∫

R

div v dx dy dz;

that is,
∫∫

S

L dy dz +M dz dx+N dx dy =

∫∫∫

R

(

∂L

∂x
+
∂M

∂y
+
∂N

∂z

)

dx dy dz.

Proof. We prove
∫∫

S N dx dy =
∫∫∫

R
∂N
∂z dx dy dz since the other two relations

are done exactly the same.
Assume R is representable in the form f1(x, y) ≤ z ≤ f2(x, y) for (x, y) ∈

Rxy where Rxy is a bounded closed region in the xy-plane bounded by a
simple closed curve C. The surface S is then composed of three parts:

S1 : z = f1(x, y) S2 : z = f2(x, y) S3 : f1(x, y) ≤ z ≤ f2(x, y).

(S1 is the bottom, S2 is the top, S3 forms the sides.) —[[Larson 118]]—

Let γ be the angle between n and k. Then
∫∫

S

N dx dy =

∫∫

S

N cos γ dσ.

Note that γ = π/2 so that along S3, cos γ = 0. Let γ ′ be the angle between
the upper normal and k. Then along S2, γ = γ ′—so that cos γ = cos γ ′—
and along S1, γ = π − γ ′—so that cos γ = cos(π − γ ′) = − cos γ ′. Since
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dσ = sec γ ′ dx dy on S1 and S2, we have
∫∫

S

N dx dy =

∫∫

S1

N dx dy +

∫∫

S2

N dx dy +

∫∫

S3

N dx dy

= −
∫∫

Rxy

N cos γ ′ sec γ ′ dx dy +

∫∫

Rxy

N cos γ ′ sec γ ′ dx dy

=

∫∫

Rxy

[

N(x, y, f2(x, y))−N(x, y, f1(x, y))
]

dx dy

Now, the triple integral can be evaluated as

∫∫∫

R

∂N

∂z
dx dy dz =

∫∫

Rxy

∫ f2(x,y)

f1(x,y)

∂N

∂z
dz dx dy

=

∫∫

Rxy

[

N(x, y, f2(x, y))−N(x, y, f1(x, y))
]

dx dy

Hence, the result follows.

Example 50.1. Evaluate
∫∫

S xy dy dz + (y2 + exz2

) dz dx + sin(xy) dx dy

where S is the surface of the region bounded by z = 1 − x2, z = y = 0, and
y + z = 2.

By the Divergence Theorem, we have

∫∫∫

R

(y + 2y + 0) dx dy dz =

∫ 1

−1

∫ 1−x2

0

∫ 2−z

0

3y dy dz dx

= 3

∫ 1

−1

∫ 1−x2

0

(2 − z)2

2
dz dx

= 3

∫ 1

−1

−(2 − z)2

6

∣

∣

∣

∣

1−x2

0

dx

= −1

2

∫ 1

−1

[(x2 + 1)3 − 8] dx

= −1

2

∫ 1

−1

(x6 + 3x4 + 3x2 − 7) dx =
184

35
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Example 50.2. Evaluate
∫∫

S F · n dσ if F = (x3 + sin z)i + (x2y + cos z)j +

ex2+y2

k and S is the surface of the region bounded by z = 4 − x2, y + z = 5,
and z = y = 0.

By the Divergence Theorem, we have
∫∫∫

R

(3x2 + x2 + 0) dx dy dz =

∫∫∫

R

4x2 dx dy dz

=

∫ 2

−2

∫ 4−x2

0

∫ 5−z

0

4x2 dy dz dx

=

∫ 2

−2

∫ 4−x2

0

4x2(5 − z) dz dx

=

∫ 2

−2

(20x2z − 2x2z2)
∣

∣

4−x2

0
dx

=

∫ 2

−2

(48x2 − 4x4 − 2x6) dx = 4608
35 ≈ 131.7

Example 50.3. Evaluate
∫∫

S ∇F · n dσ if F = 2x2 − y2 − z2 with S as the

unit sphere.

We have
∫∫

S

4x dy dz − 2y dx dz − 2z dx dy =

∫∫∫

R

(4 − 2 − 2) dx dy dz = 0.

Example 50.4. Evaluate
∫∫

S vn dσ where v = 3xi + y2j + 2z3k and S is the
surface of the unit cube in the first octant.

By the Divergence Theorem, we have
∫∫∫

R

(3 + 2y + 6z2) dx dy dz =

∫ 1

0

∫ 1

0

∫ 1

0

(3 + 2y + 6z2) dx dy dz

=

∫ 1

0

∫ 1

0

(3 + 2y + 6z2) dy dz

=

∫ 1

0

[(3 + 6z2)y + y2]
∣

∣

1

0
dz

=

∫ 1

0

(4 + 6z2) dz = 4z + 2z3|10 = 6

HOMEWORK FOR DAY 50. Page 319 #1 parts a, b, c, and d
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HOMEWORK ANSWERS. #1 a) Using the Divergence Theorem,
∫∫∫

R

3 dz dy dx = 3

∫∫∫

R

dz dy dx = 3

(

4π

3

)

= 4π

#1 c) We have

∫∫∫

R

0 dz dy dx = 0.

#1 d) We have
∫∫

S

2x dy dz + 2y dx dz + 2z dx dy =

∫∫∫

R

6 dx dy dz = 6V

where V is the volume of S.
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51 Section 5.12, Stokes’ Theorem

Objective. Students will evaluate line integrals in space by applying Stokes’
Theorem.

Recall Green’s Theorem can be written as
∮

C uT ds =
∫∫

R curlz u dx dy.
This suggests we can write

∫

C uT ds =
∫∫

S curln u dσ where n is the normal

to S, the planar surface bounded by C.
The surface integral

∫

S curln u dσ has the same value for all surfaces with
boundary C. If S1 and S2 have the same boundary C with no other common

points, we compute:
∫∫

S1

curln u dσ −
∫∫

S2

curln u dσ =

∫∫

S

curln u dσ

= ±
∫∫∫

R

div curlu dx dy dz = 0

Theorem 51.1 (Stokes’ Theorem). Let S in domain D be a piecewise smooth

orientable surface with boundary C a piecewise smooth simple closed curve.
Let u = Li + Mj + Nk be a vector field with continuous and differentiable

components in D. Then
∫

C

uT ds =

∫∫

S

curlu · n dσ

where n is the unit normal on S. In other words,
∫

C

L dx+M dy +N dz

=

∫∫

S

(

∂N

∂y
− ∂M

∂z

)

dy dz +

(

∂L

∂z
− ∂N

∂x

)

dz dx+

(

∂M

∂x
− ∂L

∂y

)

dx dy

Proof. —[[Larson 120]]— We prove
∫

C L dx =
∫∫

S
∂L
∂z
dz dx − ∂L

∂y
dx dy,

where S is of the form z = f(x, y). Then C has a projection Cxy in the
xy-plane; if we choose n as the upper normal, then by Green’s Theorem, we

have
∫

C

L(x, y, z) dx =

∫

Cxy

L[x, y, f(x, y)] dx = −
∫∫

Rxy

(

∂L

∂y
+
∂L

∂z

∂f

∂y

)

dx dy.
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However, we also can evaluate the following:
∫

C

∂L

∂z
dz dx− ∂L

∂y
dx dy =

∫∫

Rxy

(

−∂L
∂z

∂f

∂y
− ∂L

∂x

)

dx dy;

thus, the result follows.

We have a new interpretation of the curl: by Stokes’ and the Mean Value
Theorem,

∫

Cr

uT ds =

∫∫

S

curln u dσ = curln u(x0, y0, z0)Ar

for some point (x0, y0, z0) where Ar is the area of the region bounded by Cr.
Hence,

curln u(x0, y0, z0) =
1

Ar

∫

Cr

uT ds

where the integral is called the circulation around Cr. So the curl is the
circulation per unit area.

Example 51.1. Evaluate
∫

C uT ds where u = −y2i + xj + z2k and C is the
curve of intersection of y + z = 2 and x2 + y2 = 1.

∫

C

uT ds =

∫∫

S

0 dy dz + 0 dz dx+ (1 − 2y) dx dy

=

∫ 1

−1

∫

√
1−x2

−
√

1−x2

(1 − 2y) dy dx

=

∫ 1

−1

(y − y2)
∣

∣

√
1−x2

−
√

1−x2dx

=

∫ 1

−1

[

2
√

1 − x2 − 2(1 − x2)
]

dx

= 2
(π

2

)

− 2

(

x− 1

3
x3

)
∣

∣

∣

∣

1

−1

= π
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Example 51.2. Evaluate
∫

C uT ds where u = yzi+xzj+xyk and S is inside

the sphere x2 + y2 + z2 = 4 but above the cylinder x2 + y2 = 1.

First, we find C: z2 = 3 so z =
√

3. Hence, C is the circle x2+y2 = 1, z =√
3. Then
∫

C

uT ds =

∫∫

S

(x− x) dy dx+ (y − y) dz dx+ (z − z) dx dy = 0.

HOMEWORK FOR DAY 51. Page 330 #1
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HOMEWORK ANSWERS. #1 a)

∫∫

S

6 dx dy =

∫ 1

−1

∫

√
1−x2

−
√

1−x2

6 dx dy

=

∫ 1

−1

6y
∣

∣

√
1−x2

−
√

1−x2

=

∫ 1

−1

12
√

1 − x2 dx

= 12
(π

2

)

= 6π

#1 b)
∫∫

S

(2x2y − 2x2y) dy dz + (2xy2 − 2xy2) dz dx+ (4xyz − 4xyz) dx dy = 0
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52 Section 5.13, Integrals Independent of Path

Objective. Students will determine whether a given line integral in space
is independent of path and use the property of independence of path to help

evaluate line integals in space.

Theorem 52.1 (Analogue of Theorem 46.1). Let u = Xi + Y j + Zk be a

vector field with continuous components in a domain D of space. The line
integral

∫

uT ds =
∫

X dx+ Y dy +Z dz is independent of path in D if and

only if there is a function F (x, y, z) defined in D such that ∂F
∂x = X, ∂F

∂y =

Y, ∂F
∂z = Z.

In other words, the line integral is independent of path if and only if u =
∇F .

The implication of the above theorem is that if X dx+ Y dy+Z dz is an
exact differential of F , then the integral can be easily evaluated:

∫ B

A X dx+

Y dy + Z dz =
∫ B

A dF = F (B) − F (A).

Theorem 52.2 (Analogue of Theorem 46.2). Let X, Y , Z be continuous in
domain D of space. The line integral

∫

X dx + Y dy + Z dz is independent
of path in D if and only if

∫

C X dx+Y dy+Z dz = 0 on every simple closed

curve in D.

Theorem 52.3 (Analogue of Theorem 47.1). Let u = Xi + Y j + Zk be a

vector field with continuous partial derivatives in a simply connected domain
D of space. Then

∫

uT ds =
∫

X dx + Y dy + Z dz is independent of path

in D if and only if ∂Z
∂y = ∂Y

∂z ,
∂X
∂z = ∂Z

∂x ,
∂Y
∂x = ∂X

∂y .
In other words, the integral is independent of path if and only if curlu = 0.

Proof. Assume the intergal is independent of path. Then by Theorem 52.1,
u = ∇F . Thus, curlu = curl∇F = 0, by the indentity from Chapter 3.

Now assume that curlu = 0. Since D is simply connected, C forms the
boundary of a piecewise smooth oriented surface S ∈ D. Stokes’ Theorem

can then be applied to get
∫

uT ds =
∫∫

S curln udσ = 0 on every simple closed
curve C.

A vector field u whose components have continuous derivatives with
curlu = 0 is called irrotational in D. In fact, the following statements are
equivalent.
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u is irrotational in D
∫

C uT ds = 0 for every simple closed curve in D
∫

uT ds is independent of path in D
u = ∇F in D.

Theorem 52.4. Let u = Li+Mj+Nk be a vector field with continuous partial
derivatives in a spherical domain D. If divu = 0 in D, then ∂L

∂x
+ ∂M

∂y
+ ∂N

∂z
= 0

in D and a vector field v = Xi + Y j +Zk can be found such that curlv = u

in D; in other words,

∂Z

∂y
− ∂Y

∂z
= L,

∂X

∂z
− ∂Z

∂x
= M,

∂Y

∂x
− ∂X

∂y
= N

in D.

Proof. Let D have center at P0; without loss of generality, assume P0 to be
the origin. If P1(x1, y1, z1) is an arbitrary point of D, let

X(x1, y1, z1) =

∫ 1

0

[zM(x, y, z) − yN(x, y, z)] dt,

Y (x1, y1, z1) =

∫ 1

0

[xN(x, y, z)− zL(x, y, z)] dt,

Z(x1, y1, z1) =

∫ 1

0

[yL(x, y, z) − xM(x, y, z)] dt,

where x = x1t, y = y1t, z = z1t. As t varies from 0 to 1, the point (x, y, z)

varies from P0 to P1 on the segment P0P1; so (x, y, z) remains in D. Thus,
by Leibniz’s Rule and the chain rule,

∂Z

∂y1
=

∫ 1

0

[

y
∂L

∂y

∂y

∂y1
+
∂y

∂y1
L− x

∂M

∂y

∂y

∂y1

]

dt

=

∫ 1

0

[

ty
∂L

∂y
+ tL− tx

∂M

∂y

]

dt

and similarly,
∂Y

∂z1
=

∫ 1

0

[

tx
∂N

∂z
− tz

∂L

∂z
− tL

]

dt

Therefore,

∂z

∂y1
− ∂Y

∂z1
=

∫ 1

0

[

2tL− tx

(

∂M

∂y
+
∂N

∂z

)

+ ty
∂L

∂y
+ tz

∂L

∂z

]

dt.

DR. C. GARNER, RMSST, MULTIVARIABLE CALCULUS NOTES, 2006-2007 Page 186



Day 52

Since ∂L
∂x + ∂M

∂y + ∂N
∂z = 0, we can write

∂z

∂y1
− ∂Y

∂z1
=

∫ 1

0

[

2tL+ tx
∂L

∂x
+ ty

∂L

∂y
+ tz

∂L

∂z

]

dt.

Also,

tx
∂L

∂x
+ ty

∂L

∂y
+ tz

∂L

∂z
= t

(

x
∂L

∂x
+ y

∂L

∂y
+ z

∂L

∂z

)

= t

(

x1t
∂L

∂x
+ y1t

∂L

∂y
+ z1t

∂L

∂z

)

= t2
(

∂L

∂x

∂x

∂t
+
∂L

∂y

∂y

∂t
+
∂L

∂z

∂z

∂t

)

= t2
∂L

∂t

Hence,

∂z

∂y1
− ∂Y

∂z1
=

∫ 1

0

(

t2
∂L

∂t
+ 2tL

)

dt =

∫ 1

0

∂

∂t
(t2L) dt

= t2L
∣

∣

1

0
= L(x1, y1, z1)

This proves the first equivalence; the other two are proved similarly.

HOMEWORK FOR DAY 52. Page 330 #2 and:
Which of the following are independent of path: page 312 #1 a, b, d, e, Page

330 #1 a, b ?
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HOMEWORK ANSWERS. #2 a) xyz
∣

∣

(3,5,0)

(1,1,2)
= 0 − 2 = −2

#2 b) x sin yz
∣

∣

(1,0,2π)

(1,0,0)
= 0 − 0 = 0
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53 Section 8.1, Complex Functions

Objective. Students will understand basics of complex numbers and func-
tions. Students will evaluate functions at complex points.

Notations For z = x + iy, we have x = Re z and y = Im z as the real and
imaginary parts of z.

Conjugate If z = x+ iy, then the conjugate is z = x− iy; i.e., Re z = Re z
and Im z = − Im z.

Magnitude If z = x + iy, then the magnitude (or absolute value) is |z| =
√

x2 + y2 = r

Argument If x = x+ iy, then the argument is arg z = arctan y
x

= θ.

Triangle Inequality |z1 + z2| ≤ |z1| + |z2|

Complex Functions

Denoted w = f(z), we have the following functions.

Polynomials w = a0z
n + · · · + an−1z + an

Rationals w =
a0z

n + · · · + an−1z + an

b0zm + · · · + bm−1z + bm

Exponentials w = exp z = ez = ex+iy = ex(cos y + i sin y)

Trigonometric w = sin z =
eiz − e−iz

2i
, w = cos z =

eiz + e−iz

2

Hyperbolic w = sinh z =
ez − e−z

2
, w = cosh z =

ez + e−z

2

Logarithmic, inverse trigonometric, and inverse hyperbolic come later.

Example 53.1. Evaluate exp(2 + iπ2 ), sin(π
2 − 2i), tan i, exp(iπ)
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exp(2 + iπ2 ) = e2(cos π
2 + i sin π

2 ) = e2i

sin(π
2 − 2i) =

exp(2 − iπ2 ) − exp(−2 + iπ2 )

2i

=
e2(cos−π

2 + i sin−π
2 ) − e−2(cos π

2 + i sin π
2 )

2i

=
−e2i− e−2i

2i
=

−e4 − 1

2e2

tan i =
sin i

cos i
=
e−1 − e

2i
· 2

e−1 + e
=

1 − e2

i(1 + e2)

exp(iπ) = cosπ + i sinπ = −1

Example 53.2. Problems 1 and 2 a b c d e on Page 536

HOMEWORK FOR DAY 53. Page 536 #2 parts f and g, #3 part a
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HOMEWORK ANSWERS. #2 f)

sin iz =
e−z − ez

2i
=
i

i
· e

−z − ez

2i
=
i(ez − e−z)

2
= i sinh z

cos iz =
e−z + ez

2
=
ez − e−z

2
= cosh z

#2 g)

ez = ex(cos y − i sin y) = ex−iy = ez

sin z =
eiz − e−iz

2i
=
e−iz − eiz

−2i
=
eiz − e−iz

2i
= sin z

cos z =
eiz + e−iz

2
=
e−iz + eiz

2
=
eiz + e−iz

2
= cos z

#3 a) Since ez = ex(cos y + i sin y), we have that either ex = 0 or cos y +

i sin y = 0. But we know that ex for real x can never be zero, and cos y+i sin y
will only be zero when cos y = sin y = 0, which can never happen.
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54 Section 8.2, Complex-Valued Functions of a
Real Variable

Objective. Students will graph, differentiate, and integrate complex func-

tions of a real variable.

Consider the function w = F (t) = t + it2. This is a function that gives
complex values for real-valued inputs. In effect, we have F (t) representable

as the sum of two real-valued functions: f(t) = t and g(t) = t2, so that
F (t) = f(t) + ig(t).

Note that we can graph these functions by treating them as parametric;
i.e., if F (t) = eit, then we graph x(t) = ReF (t) = cos t and y = ImF (t) =

sin t and we see that the graph of F is a circle of radius 1 in the complex
plane.

Under this interpretation, all theory of limits, continuity, and sums, prod-

ucts, and quotients of functions is similar to real-valued function theory, with
the following exceptions.

Limits as t → ∞ is defined as for real functions; however, lim
t→t0

F (t) = ∞
is defined to mean lim

t→t0
|F (t)| = ∞; there is no concept of ∞ for complex

numbers.

Continuity: If f(t) and g(t) are continuous in real numbers, then F (t) =
f(t) + ig(t) is continuous in complex numbers.

By using the definition of the derivative on the real and imaginary parts,
we have that F ′(t0) = f ′(t0) + ig′(t0). All derivative rules apply.

The definite integral is done by integrating real and imaginary parts:
∫ β

α

F (t) dt =

∫ β

α

f(t) dt+ i

∫ β

α

g(t) dt.

If the indefinite integral of F (t) is G(t), then we also have that
∫ β

α

F (t) dt = G(α) −G(β),

and the Fundamental Theorem still holds.

We also have the following basic inequality, where |F (t)| < M on the
interval α ≤ t ≤ β:

∣

∣

∣

∣

∫ β

α

F (t) dt

∣

∣

∣

∣

≤
∫ β

α

|F (t)| dt ≤M(β − α).
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Example 54.1. Find
∫ 2

0 (t2 + i) dt.

∫ 2

0

(t2 + i) dt =
t3

3
+ it

∣

∣

∣

∣

2

0

=
8

3
+ 2i

Example 54.2. Find
∫ 1

0 ie
(2+i)tdt.

∫ 1

0

ie(2+i)tdt =
ie(2+i)t

2 + i

∣

∣

∣

∣

1

0

=
i(e2+i − 1)

2 + i
=

(1 + 2i)(e2+i − 1)

4

HOMEWORK FOR DAY 54. Page 536, #4, #5, #7
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HOMEWORK ANSWERS. #4

a) A line with slope −1 and intercepts (0, 2) and (2, 0)

b) The top half of the parabola y = 1 +
√
x.

c) Write as cos 3t + i sin 3t; we have a circle of radius 1 centered at the

origin.

d) Write as 2e−t(cos 2t+ i sin 2t); we have a spiral.

e) Write as te−t(cos 2t+ i sin 2t); we have a looping spiral.

f) Write as e−t + sin t− i cos t; we have a really weird graph!

#5 and #7: See the textbook
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55 Sections 8.3 and 8.4, Complex-Valued
Functions of a Complex Variable and Thier
Derivatives

Objective. Students will determine limits and continuity of complex func-
tions of a complex variable. Students will find derivatives of complex functions

of a complex variable.

We consider a function w = f(z) for complex z. We may also write
w = u+ iv, z = x + iy so that we have u + iv = f(x+ iy); i.e., if f(z) = z2

for all z, then f(x+ iy) = x2 − y2 + 2ixy so that u = x2 − y2, v = 2xy.
Every complex function w = f(z) is representable as two real functions:

u = u(x, y) = Re f(z), v = v(x, y) = Im f(z),

and vice versa; i.e., if u = xy and v = x + y, then this is equivalent to the

complex function w = xy + i(x+ y).
Real function decompositions for ez, sin z, cos z, sinh z, cosh z (Page 537)
Definitions:

Let D be a domain in the complex plane. Let z0 ∈ D and let |z − z0| < δ
be circular neighborhood or radius δ. If f(z) is defined in this neighborhood

(except possibly at z0), then lim
z→z0

f(z) = w0 if for every ǫ > 0 we have that

|f(z) − w0| < ǫ for 0 < |z − z0| < δ.
If f(z0) is defined and lim

z→z0

f(z) = w0 = f(z0), then f(z) is continuous at

f(z0).

Theorem 55.1. The function w = f(z) is continuous at z0 = x0 + iy0 if and

only if Re f(z) and Im f(z) are continuous at (x0, y0).

Theorem 55.2. The sum, product, quotient, and composition of continuous

functions is continuous (except division by zero).

Thus, all polynomials are continuous, as are ez, cos z, sin z.
Finally, we write lim

z→z0

f(z) = ∞ if lim
z→z0

|f(z)| = ∞; in other words, “ap-

proaching infinity” means moving away from the origin.
Let w = f(z) be given in D and let z0 ∈ D. Then

f ′(z0) = lim
∆z→0

f(z0 + ∆z) − f(z0)

∆z
= f ′(z0)
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is the derivative of w. This has all the same properties as the real variable

derivative—with a few more. This is because ∆z → 0 in any manner what-
ever. If we restrict ∆z to approach zero along a certain path, then this is
equivalent to a “directional derivative.” However, the derivative has the same

value in any direction.

Theorem 55.3. If w = f(z) has a differential dw = c∆z at z0, then w has

a derivative f ′(z0) = c. If w has a derivative at z0, then w has a differential
dw = f ′(z0)∆z at z0.

As with reals, differentiability implies continuity.
Power, product, quotient, and chain rules all apply.

HOMEWORK FOR DAY 55. Page 540 #1, #2, #3
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HOMEWORK ANSWERS. #1

a) u = x2 − 2xy − y2, v = x2 + 2xy − y2; continuous on C

b) u =
x2 + y2 + y

x2 + (y + 1)2
, v =

x

x2 + (y + 1)2
; continuous on {z|z 6= −1}

c) u =
2e2y sin 2x

e4y + 2e2y cos 2x+ 1
, v =

e4y − 1

e4y + 2e2y cos 2x+ 1
; continuous except

where z is an odd multiple of π/2.

d) See textbook for the rest

#2, #3: See textbook
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56 Section 8.5, Integrals

Objective. Students will evaluate integrals of complex functions by evaluat-
ing the two associated real-valued line integrals.

A complex integral is defined as a line integral. Let C : x(t), y(t) for a ≤
t ≤ b be a path in the complex plane from A to B. Subdivide [a, b] and choose

t∗j ∈ [tj−1, tj] and set z∗j = x(t∗j) + iy(t∗j). Then, if f(z) = u(x, y) + iv(x, y),
we have

∫

C

f(z) dz = lim
n→∞

max∆jt→0

n
∑

j=1

f(z∗j )∆jz

= lim
n→∞

max∆jx→0
max∆jy→0

n
∑

j=1

(u+ iv)(∆jx+ i∆jy)

= lim
n→∞

max∆jx→0
max∆jy→0

n
∑

j=1

(u∆jx− v∆jy) + i

n
∑

j=1

(v∆jx+ u∆jy)

=

∫

C

(u dx− v dy) + i

∫

C

(v dx+ u dy)

So a complex integral is the sum of two real line integrals.

Theorem 56.1. Let f(z) ∈ D be continuous, let C be the curve defined by

x(t), y(t), t ∈ [a, b], and let dz
dt = dx

dt + dy
dt i. Then

∫

C f(z) dz exists and
∫

C

f(z) dz =

∫ b

a

f(z(t))
dz

dt
dt.

Example 56.1. Page 542, examples 1 and 2

Normal properties of integrals hold: sum, constant, sum of paths, direction

reversal.

Theorem 56.2. Let f(z) be continuous on C, let |f(z)| ≤ M on C, and let

L =
∫

C ds =
∫ b

a

√

(dx/dt)2 + (dy/dt)2 dt be the length of C. Then
∣

∣

∣

∣

∣

∣

∫

C

f(z) dx

∣

∣

∣

∣

∣

∣

≤
∫

C

|f(z)| ds ≤ M · L.
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Example 56.2. Write
∫

C sin z dz as two real line integrals, then show that

the integral is independent of path.

Since sin z = sinx cosh y + i cosx sinh y, we have
∫

C

sin z dz =

∫

C

sinx cosh y dx− cosx sinh y dy +

∫

C

cosx sinh y dx+ sinx cosh y dy

Checking, we see that ∂u
∂y = sinx sinh y = ∂v

∂x and ∂u
∂x = cosx cosh y = ∂v

∂y .

Example 56.3. Evaluate
∮

1
z dz on the circle |z| = R.

Since the circle can be expressed as z = Reit, we have

∮

1

z
dz =

∫ 2π

0

1

Reit
Rieit dt

=

∫ 2π

0

i dt = 2iπ

Example 56.4. Prove that
∮

1
z dx = 0 on every simple closed path not meeting

or enclosing the origin.

Note that if C does enclose the origin, we get a nonzero value by the
previous example. So let C be the simple closed path (x, y) for t ∈ [a, b]

where C does not meet or enclose the origin. Then (x(a), y(a)) = (x(b), y(b))
and

∮

1

z
dz =

∫ b

a

1

x+ iy

(

dx

dt
+ i

dy

dt

)

dt

= log(x+ iy)|ba
= log[x(b) + iy(b)] − log[x(a) + iy(a)]

= 0

HOMEWORK FOR DAY 56. Page 544 #1, #2 parts a and b, #3 part c
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HOMEWORK ANSWERS. #1

a) C : (x, y) = (t, t) for t ∈ [0, 1]. Thus,

∫

C

(x2−iy2) dz =

∫ 1

0

(t2−it2)(1+i) dt = (1−i)(1+i)

∫ 1

0

t2 dt =
2

3
t3
∣

∣

∣

∣

1

0

=
2

3

b) C : (x, y) = (t, sin t) for t ∈ [0, π]. Thus,
∫

C

z dz =

∫ π

0

(t+ i sin t)(i+ i cos t) dt

=

∫ π

0

(t− sin t cos t+ i[t cos t+ sin t]) dt

=
1

2
t2 − 1

4
cos 2t+ it sin t

∣

∣

∣

∣

π

0

=
1

2
π2 − 1

4
+

1

4
=

1

2
π2

c) C : (x, y) = (1, t) for t ∈ [0, 1]. Then,

∫

C

1

z
dz =

∫ 1

0

1

1 + it
i dt = ln |1 + it||10 = ln(1 + i)

#2

a) z + 1 = x+ 1 + iy so u = x+ 1, v = y. Then,
∫

C

(z + 1) dz =

∫

C

(x+ 1) dx− y dy + i

∫

C

y dx+ (x+ 1) dy

and ∂
∂y(x+ 1) = ∂y

∂x = 0 and ∂y
∂y = ∂

∂x(x+ 1) = 1.

b)
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