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Number theory encompasses anything relating to propertiesof integers. In contests, we typically
encounter problems involving divisibility and factorization. We let gcd(p,q) represent the greatest
common denominator and let lcm(p,q) the least common multiple of integersp andq.

1 Divisibility and Factoring

Some problems can be solved by using only basic properties, such as our first problem.

Problem 1.1 Find all positiven such thatn2−19n+99 is a perfect square. (AIME)

Solution. Let n2−19n+ 99= k2 for some integerk. Then we solven2−19n+ 99− k2 = 0 using

the quadratic formula to getn = 1
2

(

19±
√

192−4(99−k2)
)

. Since we wantn to be an integer,

the discriminant must be an integer. Thus, 192 − 4(99− k2) = j2 for some integerj. Moreover,
since j plus/minus 19 must be divisible by 2,j must be odd. Expanding, we have 4k2−35= j2, or
4k2− j2 = 35. Hence,(2k− j)(2k+ j) = 35. So 2k− j and 2k+ j must be integers, and since we
only care aboutj2, we will seek positive cases.

One case is 2k− j = 1 and 2k+ j = 35, giving j = 17, so j2 = 289. The other case is 2k− j = 5
and 2k+ j = 7, giving j = 1, so j2 = 1. Hence,k2 = 81 ork2 = 9 which impliesn= 1,9,10,18.

The Fundamental Theorem of Arithmetic says that any positive integern can be represented in
exactly one way as the product of prime numbers, so that the factorizations ofp andq are identical
if and only if p = q.

The numberf dividesn if and only if none of the powers of the primes in the factorization of f
are greater than those ofn. Specifically, f dividesn k times if and only if there is no primep in the
factorization off that appears more than1k times as often as it appears in the factorization ofn.

On a related note, if some integerf divides integersp andq, then f dividesmp+nq, wherem
andn are any integers.

Problem 1.2 How many times does 3 divide 28!?

Solution. We reason that the answer is the sum of how many times 3 divideseach of 1,2, . . . ,28.
Of the numbers 1 through 28, exactly⌊28

3 ⌋ are multiples of 3,⌊28
32 ⌋ are multiples of 32, etc (where

⌊x⌋ is thefloor functionand represents the greatest integer les than or equal tox). To count the total
number ofp’s appearing in their factorizations, we compute 9+3+1+0+0+0+ · · ·= 13.

The generalized result is as follows.

Theorem 1.1. A prime number p divides n! exactly
∞

∑
i=1

⌊

n
pi

⌋

times.
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This fact enables us to determine how many 0’s appear at the end of n!. Because there are more
2’s than 5’s in the factorization ofn!, the number of 0’s at the end ofn! is the number of 5’s in its
factorization.

Problem 1.3 How many factors does 120 have?

Solution. Since 120= 23 ·31 ·51, we consider the three sets{20,21,22,23}, {30,31}, {50,51}. Any
number formed by picking exactly one element from each of these 3 sets and multiplying them will
be a divisor 120. Hence, there are 4·2·2 = 16 positive integers that divide 120.

Theorem 1.2. n = pn1
1 pn2

2 · · · pnk
k has(n1 +1)(n1 +2) · · · (nk +1) factors.

The greatest common divisor ofm andn is defined to be the largest integer that divides both
m andn. Two numbers whose largest common divisor is 1 are called relatively prime even though
neitherm nor n is necessarily prime. There are two notable ways to compute gcd(m,n): factoring
and theEuclidean algorithm.

Theorem 1.3 (Euclidean algorithm version 1). Let n> m. If m divides n, thengcd(m,n) = m.
Otherwise,gcd(n,m) = gcd(m,n−m· ⌊ n

m⌋).

Theorem 1.4 (Euclidean algorithm version 2). For any positive integers m and n, there exists
integers q and r such that0≤ r < n and m= nq+ r.

Problem 1.4 Find gcd(4897,1357).

Solution. Note that factoring would be time consuming. We use the Euclidean algorithm.

gcd(4897,1357) = gcd(1357,4897−3·1357) = gcd(1357,826)

= gcd(826,1357−1·826) = gcd(826,531)

= gcd(531,826−1·531) = gcd(531,295)

= gcd(295,531−1·295) = gcd(295,236)

= gcd(236,295−1·236) = gcd(236,59)

and since 59 divides 236, we have gcd(4897,1357) = gcd(236,59) = 59.

The most useful definition of the least common multiple is

lcm(m,n) =
mn

gcd(m,n)
.

The Euler phi-functionϕ(n), denotes the number of positive integers less than or equal to n that
are relatively prime ton. If we let p1, p2, . . ., pk denote all of the distinct prime number that divide
n, then

ϕ(n) = n

(

p1−1
p1

)(

p2−1
p2

)

· · ·
(

pk−1
pk

)

.

2 Modulo Tricks

The Euclidean algorithm states that there exists integersq andr such that 0≤ r < p andn= pq+ r.
We definen modulop — or simplym modp — to ber. That is,r ≡ n modp. There are a number
of little theorems that apply to modulos.

2



Theorem 2.1. kn+c≡ c modn for any integers k, n, and c.

Theorem 2.2. (kn+c)m ≡ cm modn for any integers k, n, and c, and positive integer m.

Theorem 2.3 (Fermat’s Little Theorem). ap−1 ≡ 1 modp for relatively prime integers a and p,
where p is prime.

Theorem 2.4 (Euler’s Theorem). aϕ(n) ≡ 1 modn for relatively prime integers a and n.

Theorem 2.5 (Wilson’s Theorem). (p−1)! ≡−1 modp, where p is prime.

Whenever the word remainder appears, you should immediately think modulos. Likewise, de-
termining the last few digits of a number should make you consider modulos.

The above theorems are merely suppliments to the algebra that can be performed on modular
equations, which we outline here. The rules of modular arithmetic can be summarized as follows.

1. The only numbers that can be divided bym in modulo n are those that are multiples of
gcd(m,n), each of which leaves gcd(m,n) different residues.

2. When multiplying bym in modulo n, the only numbers that can result are multiples of
gcd(m,n). There are gcd(m,n) distinct residues that all lead to the same number when multi-
plied bym.

3. Taking the square root of both sides is “normal” only in prime modulos. (For example, the
solutions ton2 ≡ 1 mod 8 are not onlyn ≡ ±1 mod 8 but more completelyn ≡ ±1,±3
mod 8.)

4. When solving for integer solutions in modulon, any integer multiple ofn can be added to or
subtracted from any number. (This includes adding multiples of n to square roots of negative
numbers.)

5. All other operations behave normally according to the standard rules of algebra over the
integers.

Problem 2.1 Find all positive integersn less than 100 such thatn2 +n+31 is divisible by 43.

Solution. Of course the problem is asking us to solven2+n+31≡ 0 mod 43. Using the quadratic
formula, we find thatn ≡ 1

2

(

−1±
√
−123

)

mod 43. However, because−123≡ −123+ 43k
mod 43 for any integerk, we can replace−123 with−123+ 43·5 = 49 to obtainn ≡ 1

2 (−1±7)
mod 43. Thus,n≡ 3,−4 mod 43. Adding 43 and 86 to each of these gives all solutions:3, 39, 46,
82, and 89.

3 Linear Diophantine Equations

Many problems deal with simple linear equations in two variables, such asax+ by= c, where we
are asked to find the number of integer solutions, or maybe a few particular integer solutions. This
kind of thing is really a number theory problem.

Theorem 3.1. The equation ax+by= c, where a, b, and c are integers, has an integer solution if
and only ifgcd(a,b) divides c. Moreover, if(x0,y0) is one such solution, then the others are given
by x= x0 +bt and y= y0 +at for every integer t.
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Of course, the above theorem is generalizable to any number of linear variables and coefficients.

Problem 3.1 Characterize the solutions to 7x+3y = 8.

Proof. Since gcd(3,7) = 1 divides 8, there are solutions. From the Euclidean algorithm, we have
7 = 3·2+1, or 1= 7+3(−2). Multiplying by 8, we have 8= 7·8+3(−16) so that(8,−16) is a
solution. Thus all solutions are(8+3t,−16+7t) for every integert.

Problem 3.2 Let n be a positive integer. Suppose there are 2016 ordered triples (x,y,z) of positive
integers satisfying the equationx+8y+8z= n. Find the maximum value ofn.

Proof. Write n = 8a+ b wherea andb are integers with 0≤ a,b < 8. Sincex ≡ n ≡ b mod 8,
the possible values ofx areb,b+ 8, . . . ,b+ 8(a− 1). Let x = b+ 8i where 0≤ i < a− 1. Then
8(y+ z) = 8(a− i), or y+ z = a− i. This givesa− i − 1 ordered pairs(y,z) of positive integer
solutions:(1,a− i −1), . . . ,(a− i −1,1). Hence, there are

a−1

∑
i=0

(a− i −1) =
a−1

∑
i=0

i =
a(a−1)

2

ordered triples satisfying the conditions of the problem. Solving a(a−1)/2= 2016 we havea= 64.
Thus, the maximum value ofn is obtained by settingb = 7: 64·8+7 = 519.

4 Exercises and Problems

(1) How many factors does 800 have?

(2) How many times does 7 divide 100!?

(3) What is the smallest positive integern for which n−6
5n+17 is non-zero and reducible?

(4) In Mathworld, the basic monetary unit is the Jool, and all other units of currency are equivalent
to an integral number of Jools. If it is possible to make the Mathworld equivalents of $299
and $943, then what is the maximum possible value of a Jool in terms of dollars?

(5) Find 883+683 mod 49.

(6) What are the last three digits of 32009?

(7) Compute the remainder when 2008! is divided by 2011.

(8) (ARML 1999) How many ways can one arrange the numbers 21, 31, 41, 51, 61, 71, and 81
such that any four consecutive numbers add up to a multiple of3?

(9) Determine all positive integersn≤ 100 such thatn4−n2 +57 is divisible by 73.

(10) Find all integersn such that 8n+3 is a perfect square.

(11) Determine all triples of integers(x,y,z) such that 3x+4y+5z= 6.

(12) (USAMO 1979) Find all non-negative integer solutions(n1,n2, . . . ,n14) to

n4
1 +n4

2 + · · ·+n4
14 = 1599.
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