Divisibility and Factoring

viodulo iricki

Linear Diophantine Equations

Suggested Resources

Some Number Theory

Chuck Garner, Ph.D.

Department of Mathematics Rockdale Magnet School for Science and Technology

May 25, 2009 / Georgia ARML Practice

Divisibility and Factoring

1 Divisibility and Factoring

Diophantin Quations

2 Modulo Tricks

3 Linear Diophantine Equations

Divisibility and Factoring

viodulo Iricks

Linear Diophantin Equations

- 1 Divisibility and Factoring
- **2** Modulo Tricks
- 3 Linear Diophantine Equations
- 4 Suggested Resources

Divisibility and Factoring

Modulo Iric

Linear Diophantin Equations

Suggested

Problem

Find all positive n such that $n^2 - 19n + 99$ is a perfect square.

Modulo Trick

Diophantin Equations

Suggested Resources

Solution.

Let $n^2 - 19n + 99 = k^2$ for some integer k. Solve $n^2 - 19n + 99 - k^2 = 0$ using the quadratic formula to get $n = \frac{1}{2} \left(19 \pm \sqrt{19^2 - 4(99 - k^2)} \right)$. We want *n* to be an integer so the discriminant must be an integer. Thus, $19^2 - 4(99 - k^2) = i^2$ for some integer j. Expanding, we have $4k^2 - 35 = i^2$, or $4k^2 - i^2 = 35$. Hence, (2k-j)(2k+j) = 35. So 2k-j and 2k+j must be integers. One case is 2k - j = 1 and 2k + j = 35, giving j = 17, so $j^2 = 289$. The other case is 2k - j = 5 and 2k + j = 7, giving j = 1, so $j^2 = 1$. Hence, $k^2 = 81$ or $k^2 = 9$ which implies n = 1, 9, 10, 18.

Modulo Tric

Linear Diophantin Fauations

Suggested

Fundamental Theorem of Arithmetic

Any positive integer n can be represented in exactly one way as the product of prime numbers, so that the factorizations of p and q are identical if and only if p=q.

Divisibility and Factorina

Modulo Tri

Linear Diophantine Fauations

Suggested Resources Any positive integer n can be represented in exactly one way as the product of prime numbers, so that the factorizations of p and q are identical if and only if p=q.

On a related note, if some integer f divides integers p and q, then f divides mp + nq, where m and n are any integers.

Suggested

Another problem

Problem

How many times does 3 divide 28!?

Divisibility and Factoring

Modulo Irio

Diophantin Equations

Suggested

Problem

How many times does 3 divide 28!?

Solution.

We reason that the answer is the sum of how many times 3 divides each of $1, 2, \ldots, 28$. Of the numbers 1 through 28, exactly $\lfloor \frac{28}{3} \rfloor$ are multiples of 3, $\lfloor \frac{28}{3^2} \rfloor$ are multiples of 3^2 , etc. To count the total number of 3's appearing in their factorizations, we compute

$$9+3+1+0+0+0+\cdots=13.$$

Divisibility and Factoring

IVIOQUIO ITIC

Linear Diophantine Equations

Suggested Resources

Theorem

A prime number p divides n! exactly $\sum_{i=1}^{\infty} \left\lfloor \frac{n}{p^i} \right\rfloor$ times.

Divisibility and Factoring

Modulo Trick

Linear Diophantin Eauations

Suggested

Problem

How many factors does 120 have?

Divisibility and Factoring

Modulo Trick

Linear Diophantin Fauations

Suggested Resources

Problem

How many factors does 120 have?

Solution.

Since $120 = 2^3 \cdot 3^1 \cdot 5^1$, we consider the three sets $\{2^0, 2^1, 2^2, 2^3\}$, $\{3^0, 3^1\}$, $\{5^0, 5^1\}$. Any number formed by picking exactly one element from each of these 3 sets and multiplying them will be a divisor 120. Hence, there are $4 \cdot 2 \cdot 2 = 16$ positive integers that divide 120.

Divisibility and Factoring

Modulo Tric

Linear Diophantin Fauations

Suggested

Theorem

$$n = p_1^{n_1} p_2^{n_2} \cdots p_k^{n_k} has (n_1 + 1)(n_1 + 2) \cdots (n_k + 1) factors.$$

Divisibility and Factoring

. .

Linear Diophantine Equations

Suggested

The greatest common divisor of m and n is defined to be the largest integer that divides both m and n. Two numbers whose largest common divisor is 1 are called relatively prime even though neither m nor n is necessarily prime.

Divisibility and Factoring

Modulo Tric

Linear Diophantine Fauations

Suggested Resources

Theorem (Euclidean algorithm version 1)

Let n > m. If m divides n, then gcd(m, n) = m. Otherwise, $gcd(n, m) = gcd(m, n - m \cdot \lfloor \frac{n}{m} \rfloor)$.

Divisibility and Factoring

Modulo Tri

Linear Diophantin Equations

Suggested Resources

Theorem (Euclidean algorithm version 1)

Let n > m. If m divides n, then $\gcd(m,n) = m$. Otherwise, $\gcd(n,m) = \gcd(m,n-m \cdot \lfloor \frac{n}{m} \rfloor)$.

Theorem (Euclidean algorithm version 2)

For any positive integers m and n, there exists integers q and r such that $0 \le r < n$ and m = nq + r.

Divisibility and Factoring

Andula Tricks

Linear Diophantin Fauations

Suggested Resources

Problem

Find gcd(4897, 1357).

Finding the GCD

Garner

Divisibility and Factoring

Modulo Trid

Suggested

Problem

Find gcd(4897, 1357).

Solution.

We use the Euclidean algorithm.

$$\begin{split} \gcd(4897,1357) &= \gcd(1357,4897 - 3 \cdot 1357) \\ &= \gcd(1357,826) \\ &= \gcd(826,1357 - 1 \cdot 826) = \gcd(826,531) \\ &= \gcd(531,826 - 1 \cdot 531) = \gcd(531,295) \\ &= \gcd(295,531 - 1 \cdot 295) = \gcd(295,236) \\ &= \gcd(236,295 - 1 \cdot 236) = \gcd(236,59) \end{split}$$

and since 59 divides 236, we have gcd(4897, 1357) = 59.

Divisibility and Factoring

Modulo Iric

Linear Diophantir Fauations

Suggested

The most useful definition of the least common multiple is

$$\mathrm{lcm}\,(m,n) = \frac{mn}{\gcd(m,n)}.$$

Modulo Trick

Linear Diophantin Eauations

Suggested

The Euler phi-function $\varphi(n)$, denotes the number of positive integers less than or equal to n that are relatively prime to n.

$$arphi(n) = n \left(rac{p_1-1}{p_1}
ight) \left(rac{p_2-1}{p_2}
ight) \cdots \left(rac{p_k-1}{p_k}
ight).$$

Divisibility and Factoring

Modulo Tricks

Linear Diophantin Equations

- 1 Divisibility and Factoring
- 2 Modulo Tricks
- 3 Linear Diophantine Equations
- **4** Suggested Resources

Divisibility and

Modulo Tricks

Linear Diophantin Equations

Suggested Resources

Theorem

 $kn + c \equiv c \mod n$ for any integers k, n, and c.

Modulo Properties

Garner

Divisibility and Factoring

Modulo Tricks

Linear Diophantine Equations

Suggested Resources

Theorem

 $kn + c \equiv c \mod n$ for any integers k, n, and c.

Theorem

 $(kn+c)^m \equiv c^m \mod n$ for any integers k, n, and c, and positive integer m.

Divisibility and

Modulo Tricks

Linear Diophantin Equations

Suggested Resources

Theorem

 $kn + c \equiv c \mod n$ for any integers k, n, and c.

Theorem

 $(kn+c)^m \equiv c^m \mod n$ for any integers k, n, and c, and positive integer m.

Theorem (Fermat's Little Theorem)

 $a^{p-1} \equiv 1 \mod p$ for relatively prime integers a and p, where p is prime.

Modulo Properties

Garner

Divisibility and Factorina

Modulo Tricks

Linear Diophantin Equations

Suggested Resources

Theorem

 $kn + c \equiv c \mod n$ for any integers k, n, and c.

Theorem

 $(kn+c)^m \equiv c^m \mod n$ for any integers k, n, and c, and positive integer m.

Theorem (Fermat's Little Theorem)

 $a^{p-1} \equiv 1 \mod p$ for relatively prime integers a and p, where p is prime.

Theorem (Euler's Theorem)

 $a^{\varphi(n)} \equiv 1 \mod n$ for relatively prime integers a and n.

 $kn + c \equiv c \mod n$ for any integers k, n, and c.

Modulo Tricks

Theorem

Theorem

 $(kn+c)^m \equiv c^m \mod n$ for any integers k, n, and c, and positive integer m.

Theorem (Fermat's Little Theorem)

 $a^{p-1} \equiv 1 \mod p$ for relatively prime integers a and p, where p is prime.

Theorem (Euler's Theorem)

 $a^{\varphi(n)} \equiv 1 \mod n$ for relatively prime integers a and n.

Theorem (Wilson's Theorem)

 $(p-1)! \equiv -1 \mod p$, where p is prime.

Modulo Tricks

Linear Diophantin

Suggested

Modulo Arithmetic

1 The only numbers that can be divided by m in modulo n are those that are multiples of gcd(m, n), each of which leaves gcd(m, n) different residues.

Divisibility and Factoring

Modulo Tricks

Linear Diophantine Eauations

- **1** The only numbers that can be divided by m in modulo n are those that are multiples of gcd(m, n), each of which leaves gcd(m, n) different residues.
- **2** When multiplying by m in modulo n, the only numbers that can result are multiples of gcd(m, n). There are gcd(m, n) distinct residues that all lead to the same number when multiplied by m.

Divisibility and Factoring

Modulo Tricks

Linear Diophantine Equations

- **1** The only numbers that can be divided by m in modulo n are those that are multiples of gcd(m, n), each of which leaves gcd(m, n) different residues.
- **2** When multiplying by m in modulo n, the only numbers that can result are multiples of gcd(m,n). There are gcd(m,n) distinct residues that all lead to the same number when multiplied by m.
- **3** Taking the square root of both sides is "normal" only in prime modulos.

Modulo Tricks

Linear Diophantine Equations

- **1** The only numbers that can be divided by m in modulo n are those that are multiples of gcd(m, n), each of which leaves gcd(m, n) different residues.
- 2 When multiplying by m in modulo n, the only numbers that can result are multiples of gcd(m, n). There are gcd(m, n) distinct residues that all lead to the same number when multiplied by m.
- **3** Taking the square root of both sides is "normal" only in prime modulos.
- **4** When solving for integer solutions in modulo *n*, any integer multiple of *n* can be added to or subtracted from any number.

Modulo Tricks

Linear Diophantine Equations

- **1** The only numbers that can be divided by m in modulo n are those that are multiples of gcd(m, n), each of which leaves gcd(m, n) different residues.
- **2** When multiplying by m in modulo n, the only numbers that can result are multiples of gcd(m,n). There are gcd(m,n) distinct residues that all lead to the same number when multiplied by m.
- **3** Taking the square root of both sides is "normal" only in prime modulos.
- 4 When solving for integer solutions in modulo n, any integer multiple of n can be added to or subtracted from any number.
- **6** All other operations behave normally according to the standard rules of algebra over the integers.

Another Problem!

Garner

Divisibilit and Factoring

Modulo Tricks

Linear Diophantin Fauations

Suggested

Problem

Find all positive integers n less than 100 such that $n^2 + n + 31$ is divisible by 43.

Another Problem!

Garner

and Factoring

Modulo Tricks

Linear Diophantin Fauations

Suggested Resources

Problem

Find all positive integers n less than 100 such that $n^2 + n + 31$ is divisible by 43.

Solution.

Of course the problem is asking us to solve $n^2+n+31\equiv 0 \mod 43$. Using the quadratic formula, we find that $n\equiv \frac{1}{2}\left(-1\pm\sqrt{-123}\right)\mod 43$. However, because $-123\equiv -123+43k\mod 43$ for any integer k, we can replace -123 with $-123+43\cdot 5=49$ to obtain $n\equiv \frac{1}{2}\left(-1\pm 7\right)\mod 43$. Thus, $n\equiv 3,-4\mod 43$. Adding 43 and 86 to each of these gives all solutions: 3, 39, 46, 82, and 89.

Divisibility and Factoring

Linear

1 Divisibility and Factoring

Diophantine Equations Suggested

2 Modulo Tricks

3 Linear Diophantine Equations

Divisibility and Factoring

IVIOGGIO IIIC

Linear Diophantine Equations

Suggested Resources

Theorem

The equation ax + by = c, where a, b, and c are integers, has an integer solution if and only if $\gcd(a,b)$ divides c. Moreover, if (x_0,y_0) is one such solution, then the others are given by $x = x_0 - bt$ and $y = y_0 + at$ for every integer t.

Modulo Trick

Linear Diophantine Equations

Suggested Resources

Oh Joy! Another Problem!

Problem

Characterize the solutions to 7x + 3y = 8. How many positive integer solutions are there?

viodulo III

Linear Diophantine Equations

Suggested Resources

Problem

Characterize the solutions to 7x + 3y = 8. How many positive integer solutions are there?

Solution.

Since $\gcd(3,7)=1$ divides 8, there are solutions. From the Euclidean algorithm, we have $7=3\cdot 2+1$, or 1=7+3(-2). Multiplying by 8, we have $8=7\cdot 8+3(-16)$ so that (8,-16) is a solution. Thus all solutions are (8-3t,-16+7t) for every integer t. For positive integer solutions, we must have both 8-3t>0 and -16+7t>0. But this implies $t<\frac{8}{3}$ and $t>\frac{16}{7}$, which no integer t satisfies. Hence, there are no positive integer solutions.

Divisibility and Factoring

Modulo IIIC

Linear Diophantine Equations

Suggested Resources

Problem

Let n be a positive integer. Suppose there are 2016 ordered triples (x, y, z) of positive integers satisfying the equation x + 8y + 8z = n. Find the maximum value of n.

Suggested Resources

Solution.

Write n=8a+b where a and b are integers with $0 \le a, b < 8$. Since $x \equiv n \equiv b \mod 8$, the possible values of x are $b, b+8, \ldots, b+8(a-1)$. Let x=b+8i where $0 \le i < a-1$. Then 8(y+z)=8(a-i), or y+z=a-i. This gives a-i-1 ordered pairs (y,z) of positive integer solutions: $(1,a-i-1), \ldots, (a-i-1,1)$. Hence, there are

$$\sum_{i=0}^{a-1} (a-i-1) = \sum_{i=0}^{a-1} i = \frac{a(a-1)}{2}$$

ordered triples satisfying the conditions of the problem. Solving a(a-1)/2=2016 we have a=64. Thus, the maximum value of n is obtained by setting b=7. This gives $64 \cdot 8 + 7 = 519$.

Divisibility and Factoring

Divisibility and Factoring

Suggested Resources Modulo Tricks

3 Linear Diophantine Equations

Suggested Resources

Garner

Divisibility and Factoring

Modulo Iri

Linear Diophantin Fauations

Suggested Resources 104 Number Theory Problems, Andreescu, Andrica, Feng;

Birkhäuser 2007.

Number Theory Through Inquiry, Marshall, Odell, Starbird; Mathematical Association of America 2007.