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Warm-Up Problem

Problem
Find all positive n such that n2 − 19n + 99 is a perfect
square.
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Warm-Up Problem

Solution.
Let n2 − 19n + 99 = k2 for some integer k. Solve
n2 − 19n + 99− k2 = 0 using the quadratic formula to get
n = 1

2

(
19±

√
192 − 4(99− k2)

)
. We want n to be an

integer so the discriminant must be an integer. Thus,
192 − 4(99− k2) = j2 for some integer j. Expanding, we
have 4k2 − 35 = j2, or 4k2 − j2 = 35. Hence,
(2k− j)(2k + j) = 35. So 2k− j and 2k + j must be
integers. One case is 2k− j = 1 and 2k + j = 35, giving
j = 17, so j2 = 289. The other case is 2k− j = 5 and
2k + j = 7, giving j = 1, so j2 = 1. Hence, k2 = 81 or
k2 = 9 which implies n = 1, 9, 10, 18.
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Fundamental Theorem of Arithmetic

Any positive integer n can be represented in exactly one
way as the product of prime numbers, so that the
factorizations of p and q are identical if and only if p = q.

On a related note, if some integer f divides integers p and
q, then f divides mp + nq, where m and n are any
integers.
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Another problem

Problem
How many times does 3 divide 28!?

Solution.
We reason that the answer is the sum of how many times
3 divides each of 1, 2, . . . , 28. Of the numbers 1 through
28, exactly b28

3 c are multiples of 3, b28
32 c are multiples of

32, etc. To count the total number of 3’s appearing in
their factorizations, we compute
9 + 3 + 1 + 0 + 0 + 0 + · · · = 13.
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A Generalization

Theorem

A prime number p divides n! exactly
∞∑

i=1

⌊
n
pi

⌋
times.
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Yet Another Problem

Problem
How many factors does 120 have?

Solution.
Since 120 = 23 · 31 · 51, we consider the three sets
{20, 21, 22, 23}, {30, 31}, {50, 51}. Any number formed by
picking exactly one element from each of these 3 sets and
multiplying them will be a divisor 120. Hence, there are
4 · 2 · 2 = 16 positive integers that divide 120.
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Theorem of Factors

Theorem
n = pn1

1 pn2
2 · · ·pnk

k has (n1 + 1)(n1 + 2) · · · (nk + 1) factors.
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Common Definitions

The greatest common divisor of m and n is defined to be
the largest integer that divides both m and n. Two
numbers whose largest common divisor is 1 are called
relatively prime even though neither m nor n is
necessarily prime.
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Euclidean Algorithm

Theorem (Euclidean algorithm version 1)

Let n > m. If m divides n, then gcd(m, n) = m. Otherwise,
gcd(n, m) = gcd(m, n−m · b n

mc).

Theorem (Euclidean algorithm version 2)

For any positive integers m and n, there exists integers q
and r such that 0 ≤ r < n and m = nq + r.



Some
Number
Theory

Garner

Divisibility
and
Factoring

Modulo Tricks

Linear
Diophantine
Equations

Suggested
Resources

Euclidean Algorithm

Theorem (Euclidean algorithm version 1)

Let n > m. If m divides n, then gcd(m, n) = m. Otherwise,
gcd(n, m) = gcd(m, n−m · b n

mc).

Theorem (Euclidean algorithm version 2)

For any positive integers m and n, there exists integers q
and r such that 0 ≤ r < n and m = nq + r.



Some
Number
Theory

Garner

Divisibility
and
Factoring

Modulo Tricks

Linear
Diophantine
Equations

Suggested
Resources

Finding the GCD

Problem
Find gcd(4897, 1357).

Solution.
We use the Euclidean algorithm.

gcd(4897, 1357) = gcd(1357, 4897− 3 · 1357)
= gcd(1357, 826)
= gcd(826, 1357− 1 · 826) = gcd(826, 531)
= gcd(531, 826− 1 · 531) = gcd(531, 295)
= gcd(295, 531− 1 · 295) = gcd(295, 236)
= gcd(236, 295− 1 · 236) = gcd(236, 59)

and since 59 divides 236, we have
gcd(4897, 1357) = 59.
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Another Definition

The most useful definition of the least common multiple
is

lcm (m, n) =
mn

gcd(m, n)
.
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Euler’s phi-function

The Euler phi-function ϕ(n), denotes the number of
positive integers less than or equal to n that are
relatively prime to n.

ϕ(n) = n
(

p1 − 1
p1

) (
p2 − 1

p2

)
· · ·

(
pk − 1

pk

)
.
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Modulo Properties

Theorem
kn + c ≡ c mod n for any integers k, n, and c.

Theorem
(kn + c)m ≡ cm mod n for any integers k, n, and c, and
positive integer m.

Theorem (Fermat’s Little Theorem)
ap−1 ≡ 1 mod p for relatively prime integers a and p,
where p is prime.

Theorem (Euler’s Theorem)
aϕ(n) ≡ 1 mod n for relatively prime integers a and n.

Theorem (Wilson’s Theorem)
(p− 1)! ≡ −1 mod p, where p is prime.
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Modulo Arithmetic

1 The only numbers that can be divided by m in
modulo n are those that are multiples of gcd(m, n),
each of which leaves gcd(m, n) different residues.

2 When multiplying by m in modulo n, the only
numbers that can result are multiples of gcd(m, n).
There are gcd(m, n) distinct residues that all lead to
the same number when multiplied by m.

3 Taking the square root of both sides is “normal” only
in prime modulos.

4 When solving for integer solutions in modulo n, any
integer multiple of n can be added to or subtracted
from any number.

5 All other operations behave normally according to
the standard rules of algebra over the integers.
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Another Problem!

Problem
Find all positive integers n less than 100 such that
n2 + n + 31 is divisible by 43.

Solution.
Of course the problem is asking us to solve
n2 + n + 31 ≡ 0 mod 43. Using the quadratic formula,
we find that n ≡ 1

2
(
−1±

√
−123

)
mod 43. However,

because −123 ≡ −123 + 43k mod 43 for any integer k,
we can replace −123 with −123 + 43 · 5 = 49 to obtain
n ≡ 1

2 (−1± 7) mod 43. Thus, n ≡ 3,−4 mod 43.
Adding 43 and 86 to each of these gives all solutions: 3,
39, 46, 82, and 89.
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A Theorem

Theorem
The equation ax + by = c, where a, b, and c are integers,
has an integer solution if and only if gcd(a, b) divides c.
Moreover, if (x0, y0) is one such solution, then the others
are given by x = x0 − bt and y = y0 + at for every integer t.
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Oh Joy! Another Problem!

Problem
Characterize the solutions to 7x + 3y = 8. How many
positive integer solutions are there?

Solution.
Since gcd(3, 7) = 1 divides 8, there are solutions. From
the Euclidean algorithm, we have 7 = 3 · 2 + 1, or
1 = 7 + 3(−2). Multiplying by 8, we have
8 = 7 · 8 + 3(−16) so that (8,−16) is a solution. Thus all
solutions are (8− 3t,−16 + 7t) for every integer t.
For positive integer solutions, we must have both
8− 3t > 0 and −16 + 7t > 0. But this implies t < 8

3 and
t > 16

7 , which no integer t satisfies. Hence, there are no
positive integer solutions.
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Two Problems in a Row!

Problem
Let n be a positive integer. Suppose there are 2016
ordered triples (x, y, z) of positive integers satisfying the
equation x + 8y + 8z = n. Find the maximum value of n.
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Two Problems in a Row!

Solution.
Write n = 8a + b where a and b are integers with
0 ≤ a, b < 8. Since x ≡ n ≡ b mod 8, the possible values
of x are b, b + 8, . . . , b + 8(a− 1). Let x = b + 8i where
0 ≤ i < a− 1. Then 8(y + z) = 8(a− i), or y + z = a− i.
This gives a− i− 1 ordered pairs (y, z) of positive integer
solutions: (1, a− i− 1), . . . , (a− i− 1, 1). Hence, there are

a−1∑
i=0

(a− i− 1) =
a−1∑
i=0

i =
a(a− 1)

2

ordered triples satisfying the conditions of the problem.
Solving a(a− 1)/2 = 2016 we have a = 64. Thus, the
maximum value of n is obtained by setting b = 7. This
gives 64 · 8 + 7 = 519.
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104 Number Theory Problems,
Andreescu, Andrica, Feng;
Birkhäuser 2007.

Number Theory Through Inquiry,
Marshall, Odell, Starbird;
Mathematical Association of America 2007.
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