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The approach to calculus as problem solving is two-fold:

• develop problem-solving techniques within the calculus milieu, and

• use calculus as a problem-solving technique.

To this end, we present a few topics and some problems that are indicative of a

problem-solving approach to calculus.

Euler’s method and slope fields are not, in terms of concepts or calculations, cal-

culus concepts per se. One can compute an Euler’s method approximation and graph

a slope field without knowing about derivatives or integrals. Phrased in terms of

“rate equations,” one can develop the algorthmic and conceptual framework of Eu-

ler’s method, and from there, introduce Riemann sums. One cannot solve rate equa-

tions without knowledge of differentiation and integration, but this is not the point

of Euler’s method anyway.

1 Euler’s Method Equals Riemann Sums

The defining (recursive) equation for Euler’s Method on the rate equation y′ = f (x, y)

with initial value y(x0)= y0 with step size ∆x is

y(xn+1)= y(xn)+ y′(xn)∆x.

We approximate, say, f (x4) by using Euler’s method four times:

y(x1)= y(x0)+ y′(x0)∆x

y(x2)= y(x1)+ y′(x1)∆x

y(x3)= y(x2)+ y′(x2)∆x

y(x4)= y(x3)+ y′(x3)∆x.
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Seconds Velocity Seconds Velocity

(ft/sec) (ft/sec)

0 0 8 27.477

1 3.494 9 30.837

2 6.971 10 34.180

3 10.431 11 37.506

4 13.874 12 40.816

5 17.300 13 44.110

6 20.709 14 47.388

7 24.101 15 50.650

Table 1: VELOCITIES OF A BARREL OF NUCLEAR WASTE

However, a simple rewriting of each equation gives us

y(x1)− y(x0)= y′(x0)∆x

y(x2)− y(x1)= y′(x1)∆x

y(x3)− y(x2)= y′(x2)∆x

y(x4)− y(x3)= y′(x3)∆x.

Now, sum the above equations, and the “inner” function values cancel1 to give

y(x4)− y(x0)=
3

∑

i=0

y′(xi)∆x.

If we generalize, then we can write

y(xn)− y(x0)=
n−1
∑

i=0

y′(xi)∆x.

Thus, calling x0 = a and xn = b, if we let ∆x → 0, we have part of the Fundamental

Theorem of Calculus:

y(b)− y(a)=
∫b

a
y′(x) dx.

Problem 1. Consider Table 1, which displays the velocity of a barrel of nuclear

waste at each second over a 15-second fall through the sea. How far has it fallen over

the 15 seconds?

The motivation for the rest of the course is to find exact solutions to rate equations.

2 Recognizing Solutions to Rate Equations

Once derivatives and differentiation are introduced, we always connect our ideas to

rate equations.

1Telescoping series in action!
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Problem 2. One of the basic trigonometric identities is the so-called Pythagorean

Identity:

sin2 x+cos2 x= 1.

Solving this identity for cos x, we have

cos x=
√

1−sin2 x.

Thus, if y= sin x, then

y′ = cos x=
√

1−sin2 x =
√

1− y2.

Notice that this is now a rate equation

y′ =
√

1− y2

and we know that the solution to this rate equation must be y= sin x.

(a) Sketch a slope field for this rate equation.

(b) Use Euler’s method with initial value y(0)= 0 and a step size of 0.25 to approx-

imate y(1).

(c) Use your calculator to find the value of y(1)= sin1.

(d) Determine a step size so that Euler’s method will approximate sin1 to within 3

decimal places.

(e) Find the solution to the rate equation y′ =−
√

1− y2.

Problem 3. Notice that if y =
(

x2+4
)5

, then, by the Chain Rule, we have y′ =
10x

(

x2 +4
)4

. Use this information to solve the rate equation y′ = 10xy4/5.

Problem 4. Find a solution to the rate equation y′ = 6xy2/3.

Problem 5. The graph of a function of the form

P(t)=
M

1+Ce−rMt
,

where M, r, and C are constants, is a logistic curve. Graph the function

y(x)=
8

1+10e−0.9x

in the window −1 ≤ x ≤ 10, −1 ≤ y ≤ 9. What value does y approach as x →∞? What

appears to be the y-value of the point where y′ is changing the fastest? How are these

numbers related to the logistic rate equation?
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3 Proof Techniques in Calculus

The common proof technique of reductio ad absurdum, or “proof by contradiction,”

along with the problem-solving technique of “defining a new function” are used to

prove important theorems and are to be remembered as useful techniques.

The proof below is based on the that found in Apostol [1967].

Theorem 1 (Rolle’s Theorem). Let f (x) be differentiable on (a, b) and continuous

on [a, b] where f (a)= f (b). Then there is some point c in (a, b) such that f ′(c)= 0.

Proof. We will use the method of proof by contradiction. Assume f ′(x) 6= 0 for every x

in (a, b).

By the Extreme Value Theorem, f has a global maximum M and a global min-

imum m. Fermat’s Test indicates that neither extreme value can be taken in (a, b)

or else f ′ is zero there; hence, both extrema occur at the endpoints of the interval.

But since f (a) = f (b), we have M = m and thus f is constant on (a, b). This implies

f ′(x) = 0 everywhere on (a, b); thus, we have a contradiction. Hence, there is at least

one c in (a, b) such that f ′(c)= 0.

Next, we prove Cauchy’s Mean Value Theorem. The proof relies on the “define a

new function” technique. This is a nice result that allows one to trivially prove the

standard Mean Value Theorem.

Theorem 2 (Cauchy’s Mean Value Theorem). Let f and g be two functions con-

tinuous on [a, b] and differentiable on (a, b). Then, for some c in (a, b),

f (b)− f (a)

g(b)− g(a)
=

f ′(c)

g′(c)

provided g(b) 6= g(a) and g′(c) 6= 0.

Proof. We note that the quantity

k =
f (b)− f (a)

g(b)− g(a)

is constant since it depends only on the real number constants a and b. We introduce

the function P(x)= f (x)−kg(x) on [a, b], where k is defined above. Then we have

P(x)= f (x)−kg(x)

= f (x)−
f (b)− f (a)

g(b)− g(a)
g(x)

=
f (x)[g(b)− g(a)]− g(x)[ f (b)− f (a)]

g(b)− g(a)
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g(a)

g(b)

f (a)

f (b)

a b

g′(c)

f ′(c)

c

Figure 1: TWO FUNCTIONS DEMONSTRATING CAUCHY’S MEAN

VALUE THEOREM

so that

P(a)= f (a)−kg(a)

=
f (a)[g(b)− g(a)]− g(a)[ f (b)− f (a)]

g(b)− g(a)

=
f (a)g(b)− g(a) f (b)

g(b)− g(a)

and

P(b)= f (b)−kg(b)

=
f (b)[g(b)− g(a)]− g(b)[ f (b)− f (a)]

g(b)− g(a)

=
− f (b)g(a)+ g(b) f (a)

g(b)− g(a)

implying that P(a) = P(b). Hence, we may apply Rolle’s Theorem. Therefore, there

exists a point c in (a, b) such that P ′(c)= 0. We have

P ′(c)= f ′(c)−kg′(c)= 0

f ′(c)= kg′(c)

f ′(c)

g′(c)
= k

f ′(c)

g′(c)
=

f (b)− f (a)

g(b)− g(a)

which proves the theorem.
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In the course of developing the methods and techniques, we define the logarithm

function ln(x)= L(x) as

L(x)=
∫x

1

1

t
dt.

Properties of this function are fully investigated, including all standard logarithm

properties.

When it comes to the exponential function exp(x) = E(x), we define it as the

inverse of L(x). As the chain rule and the Fundamental Theorem has been well-

established at this point, it is now very easy to prove the following.

Theorem 3. The derivative of exp(x) is itself.

Proof. To determine the derivative, we will begin by composing ln(x) with exp(x) in

two ways. First, we have that ln(exp(x)) = x. Recalling that ln(x) =
∫x

1
1
t

dt, we also

have that

ln(exp(x))=
∫exp(x)

1

1

t
dt.

Therefore,
∫exp(x)

1

1

t
dt = x.

Taking derivatives of both sides, we get

1

exp(x)
·exp′(x)= 1, or exp′(x)= exp(x).

4 Illustrative Problems

These problems are to be done without a calculator.

Problem 6. Let f (x)= |x|+ x. Does f ′(0) exist? Explain.

Problem 7. (Taylor and Mann [1983]) Let f (x)= 5
p

16+ x2+4
√

(3− x)2, where we

take the positive root so that
√

(3− x)2 = |3− x|. Note that f is differentiable except

when x= 3 and that f (x)→∞ as x→±∞.

(a) How do you infer from this information that f must attain a global minimum

value?

(b) Find formulas for f ′(x) when x< 3 and when x > 3, and show that f ′ < 0 if x< 3

and that f ′ > 0 if x > 3.

(c) Is the derivative continuous at x= 0? What happens to the graph of f at x= 0?

(d) What is the minimum value of f ?

Problem 8. (Fraga [1993]) In medicine, the reaction R(x) to a dose x of a drug is

given by R(x)= Ax2(B− x), where A > 0 and B > 0. The sensitivity S(x) of the body to

a dose of size x is defined to be R′(x). Assume that a negative reaction is a bad thing.
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(a) What seems to be the domain of R? What seems to be the physical meaning of

the constant B? What seems to be the physical meaning of the constant A?

(b) For what value of x is R a maximum?

(c) What is the maximum value of R?

(d) For what value of x is the sensitivity a minimum?

(e) Why is it called sensitivity?

Problem 9. (Zeitz [1999]) For some constant a > 1, consider the convergent se-

quence {xn} defined by x0 = a and

xn+1 =
1

2

(

xn +
a

xn

)

for n = 1,2, . . .. To what does this sequence converge?

Problem 10. (AP) Suppose that 5x3+40=
∫x

c
f (t) dt.

(a) What is f (x)?

(b) Find the value of c.

Problem 11. (Fraga [1993]) Let G(x)=
∫x

0

√

16− t2 dt.

(a) Find G(0).

(b) Does G(2)=G(−2)? Does G(2)=−G(−2)?

(c) What is G′(2)?

(d) What are G(4) and G(−4)?

Problem 12. (Roberts [1996]) Table 2 shows four points on the function f .

(a) Estimate f ′(10).

(b) Estimate f −1(8.5)

(c) Estimate
∫10

8 f ′(t) dt.

Problem 13. (Stein and Barcellos [1992]) When computing the internal energy of

a crystal, Claude Garrod, in his book Twentieth Century Physics [1984], states that

the integral
∫

π/2

0

sin x

e0.26sinx −1
dx

“cannot be evaluated analytically. However, it can easily be computed numerically

using Simpson’s rule. The result is 5.56.”
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t f (t)

8 8.253

9 8.372

10 8.459

11 8.616

Table 2: DATA FOR PROBLEM 12

(a) Is the integral proper or improper? Why?

(b) What is the limit of the integrand as x → 0+?

(c) What does “cannot be evaluated analytically” mean?

(d) Is it possible to use your calculator program to approximate the integral by

Simpson’s rule with n = 6? If so, approximate it to four decimal places; if not,

why not?

Problem 14. (Fraga [1993]) Four calculus students disagree as to the value of the

integral
∫

π

0 sin8 x dx. Abby says that it is equal to π. Nika says that it is equal to

35π/128. Catherine claims it is equal to 3π/90−1, while Peyton says its equal to π/2.

One of them is right. Which one is it?

Problem 15. (Zeitz [1999]) Compute

∫

π/2

0
cos2 x dx in your head.

Problem 16. (Fraga [1993]) Show that the region enclosed by the x-axis and the

graph of the parabola

f (x)=
2

a2
x−

1

a3
x2, a > 0

has an area that is independent of the value of a. How large is this area? What curve

is determined by the vertices of all these parabolas?

Problem 17. Partial Fractions Versus Trig Substitution

(a) Graph the function f (x)= 1
x2−4

on your paper.

(b) Is the definite integral
∫1
−1

dx
x2−4

negative or positive? Justify your answer with

reference to your graph.

(c) Compute the integral in part (b) by using partial fractions.

(d) A Georgia Tech calculus student suggests instead to use the substitution x =
2secθ. Compute the integral in this way, or describe why this substitution

fails.
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Problem 18. (AP) If we use the substitution u = x/2 in the integral

∫4

2

1− (x/2)2

x
dx,

then the integral becomes

A)

∫2

1

1−u2

u
du B)

∫4

2

1−u2

u
du C)

∫4

2

1−u2

4u
du

D)

∫4

2

1−u2

2u
du E)

∫2

1

1−u2

2u
du

Problem 19. (AP) If
∫

f (x)sin x dx=− f (x)cos x+
∫

3x2 cos x dx,

then f (x) could be

A) 3x2 B) x3 C) −x3 D) sin x E) cos x

Problem 20. (Fraga [1993]) Justin and Jonathan are having an argument as to

the value of
∫

sec2 xtan x dx. Justin makes the substitution u = sec x and gets the

answer 1
2 sec2 x, whereas Jonathan makes the substitution u = tan x and gets the

answer 1
2 tan2 x. Please get them to stop arguing by explaining to them why their

antiderivatives are both acceptable.

Problem 21. (Finney et al. [2001]) You are driving along the highway at a steady

60 mph (88 ft/sec) when you see an accident ahead and slam on the brakes. What

constant decceleration is required to stop your car in 242 ft?

Problem 22. Let f and g be continuous and differentiable functions satisfying the

given conditions for some real number B:

I.
∫3

1 f (x+2) dx= 3B

II. The average value of f in the interval [1,3] is 2B

III.
∫x
−4 g(t) dt = f (x)+3x

IV. g(x)= 4B+ f ′(x)

(a) Find
∫5

1 f (x) dx in terms of B.

(b) Find B.

Problem 23. (Finney et al. [2001]) Solve the differential equation dP/dt = kP2 for

constant k, with initial condition P(0) = P0. Prove that the graph of the solution has

a vertical asymptote at a positive value of t. What is that value of t? (This value is

called the catastrophic solution.)

Problem 24. A particle is moving along the path of the curve determined by the

parametric equations x = e2t+1 and y= ln(e4t+2e2t+1), where t > 0.

(a) Find d y/dx in terms of t, then find the equation of the tangent line at time t = 1
2 .
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(b) Show that
d2 y

dx2
=

−2

(e2t+1)2
.

(c) Sketch the path of the curve and indicate the direction of motion.

(d) Write the set of parametric equations without the parameter t.

Problem 25. (1990 Putnam Exam) Find all real-valued continuously differen-

tiable functions f on the real line such that for all x,

( f (x))2 =
∫x

0

[

( f (t))2+ ( f ′(t))2
]

dt+1990.

Problem 26. (Roberts [1996]) During your teacher’s days as a student last cen-

tury, he often studied calculus in a dim unheated room with only one candle for light

and heat. One particular day in mid-winter, after walking 10 miles (uphill both ways!)

through knee-deep snow to attend class, he returned home too tired to study. After

lighting the solitary candle on his desk, he walked directly away cursing his woeful

situation. The temperture (in degrees Fahrenheit) and illumination (in percentage of

candle-power) decreased as his distance (in feet) from his candle increased. In fact,

he kept a record of this and in Table 3 is that information, just in case you may not

believe the preceding sad tale!

Assume that I get cold when the temperature is below 40◦F and it is dark when

the illumination is at most 50% of one candle-power.

a) What is the average rate at which the temperature is changing when the illu-

mination drops from 77% to 56%?

b) I can still read my old unlit analog watch when the illumination is 64%. Can I

still read my watch when I am 3.5 feet from the candle? Explain.

c) Suppose that at 6 feet the instantaneous rate of change of the temperature is

−4.5◦F per foot and the instantaneous rate of change of the illumination is −3%

candle-power per foot. Estimate the temperature and the illumination at 7 feet.

d) Am I in the dark before I am cold or am I cold before I am in the dark? Explain.

Problem 27. (Zeitz [1999]) Compute lim
n→∞

n
∑

k=1

n

k2+n2
.

Problem 28. (Roberts [1996]) Jay is a waiter at a fine-dining restaurant with 100

tables. During his first month he waited on 20 tables every night, and collected an

average tip of $15 from each table. He started to work more tables, and noticed that

for every extra table he took on in a night, his average tip would go down 25 cents

per table. He figures that he is physically capable of waiting on up to 30 tables in a

night. If Jay wants to maximize his tip money, how many more tables should he wait

on?
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Distance Temperature Illumination

(feet) (◦F) (% candle-power)

0 55.0 100

1 54.5 88

2 53.5 77

3 52.0 68

4 50.0 60

5 47.0 56

6 43.5 53

Table 3: TABLE FOR PROBLEM 26

Problems For You to Try

Problem 29. (Palmaccio [1996]) A builder is purchasing a rectangular plot of land

with frontage on a road for the purpose of constructing a rectangular warehouse. Its

floor area must be 300,000 square feet. Local building codes require that the building

be set back 40 feet from the road and that there be empty buffer strips of land 25 feet

wide on the sides and 20 feet wide in the back. Find the overall dimensions of the

parcel of land and building which will minimize the total area of the land parcel that

the builder must purchase.

Problem 30. Suppose f (x) is a continuous increasing function for all positive real

numbers x. Let a > 0. Then further suppose that t is the tangent line of f (x) at

the point (a, f (a)), and that n is the normal line of f (x) at the point (a, f (a)). Let t

intersect the x-axis at (xt,0) and n intersect the x-axis at (xn,0). Let R represent the

area of the triangle formed by connecting the points (a, f (a)), (xt,0), and (xn,0).

(a) Find an expression, in terms of f (a) and f ′(a), for R.

(b) Let f (x) = x3 +1 and a = 1. Find intersection coordinates xt and xn, and then

find area of the triangle formed by the points (1, f (1)), (xt,0), and (xn,0).

(c) What would be different about your expression in part (a) if f (x) was a contin-

uous decreasing function?

Problem 31. Let

f (x)=
∫x2

0

p
1+ t2

2
p

t
dt.

Without using a calculator, find any extreme points and inflection points of f (x), then

sketch its graph.

Problem 32. (Smith and Moore [1996]) The cooling system in my old truck holds

about 10 liters of coolant. Last summer, I flushed the system by running tap water

into a tap-in on the heater hose while the engine was running and simultaneously
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draining the thoroughly mixed fluid from the bottom of the radiator. Water flowed

in at the same rate that the mixture flowed out – at about 2 liters per minute. The

system was initially 50% antifreeze. If we let W be the amount of water in the system

after t minutes, then it follows that

dW

dt
= 2−2

(

W

10

)

.

(a) Explain why the equation above is the correct one.

(b) Find W as a function of time.

(c) How long should I have let water run into the system to ensure that 95% of the

mixture was water?

Problem 33. (AP) P1(x1, y1) and P2(x2, y2) are two points on the curve y = ax2 +
bx+ c, with a 6=0. A line is drawn parallel to the chord P1P2 and tangent to the curve

at the point P(x0, y0). Prove that x0 = (x1 + x2)/2.

Problem 34. (AP) Given a function f (x) defined for all real x, and such that f (x+
h)− f (x)< 6h2 for all real h and x. Show that f (x) is a constant.

Problem 35. (Zeitz [1999]) Let f (x)=
n

∏

k=0

(x+k). Find f ′(1).

Problem 36. (Taylor and Mann [1983]) A well is located at the point (0,a), and a

house is located at (b,0), where a, b > 0. A pipline is to be laid in two straight parts,

the first part from the spring to (x,0), and the second part from (x,0) to the house.

The two parts will cost c1 and c2 dollars per unit length, respectively.

(a) Show that the total cost of the pipeline, for any value of x, is

f (x)= c1

√

a2− x2 + c2|b− x|.

(b) Show that f has its global minimum value for some x such that 0< x≤ b. (Hint:

Consider the sign of f ′(x) when x≤ 0 and when x > b.)

(c) Find the inequalities which must be satisfied by c1, c2, a, and b if f is to attain

its minimum for 0< x< b.
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