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Roots: Basic Facts

Viète’s Relations. Given x3 + ax2 + bx + c = 0 where r, s, and t are the
roots, then

r + s + t = −a

rs + rt + st = b

rst = −c
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Roots: Basic Facts

Easily generalized for anxn + an−1xn−1 + · · ·+ a1x + a0 with roots
r1, r2, . . . , rn.

n∑
i=1

ri = −an−1

an

n∑
i,j=1,i6=j

rirj =
an−2

an

n∏
i=1

ri = (−1)n a0

an

n∑
i=1

r2
i =

a2
n−1 − 2an−2an

a2
n
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Roots: Problem 1

If r and s are the roots of x2 − 21x + 10 = 0, then find r2 + s2.

Clearly, r + s = 21 and rs = 10. Since

(r + s)2 = r2 + 2rs + s2

we have
212 = r2 + 2(10) + s2,

or
r2 + s2 = 441− 20 = 421.
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Roots: Problem 2

One of the three roots of the equation x3 + ax2 + 21x + 6 = 0 is the reciprocal
of a second root. Find the exact value of a.
[GCTM State Tournament, 2006]

Let the three roots be denoted p, 1
p , and q. Then the product of the roots is

p · 1
p · q = q = −6. The sum of the pairwise products of the roots is

p · 1
p + pq + q · 1

p = 1 + pq + q
p = 21, or p + p2q + q = 21p. Since q = −6,

this equation becomes 6p2 + 20p + 6 = 0, from which we have p = −3 or
p = −1

3 . Thus, the roots are −3, −1
3 , and −6. Therefore, a, the sum of the

roots, is −28
3 .
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Polynomials: Basic Facts

The Factor Theorem. If P(a) = 0, then x− a is a factor of P(x).
The Remainder Theorem. If a polynomial P(x) is divided by x− a, then the
remainder is the value of P(a).

The Sum of the Coefficients. The value P(1) is the sum of the coefficients of
P(x).
Use the roots!
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Polynomials: Problem 1

Steve picks a fourth degree polynomial p with nonnegative integer coefficients
and challenges Jack to discover the five coefficients. Steve lets Jack pick only
two values of x to help him discover the coefficients. Jack picks x = 1 and
x = 10. Steve tells him p(1) = 9 and p(10) = 32, 013. Now Jack knows
precisely what the polynomial’s coefficients are, and as proof, Jack tells Steve
the value of p(3). What is the value of p(3)?
[GCTM State Tournament, 2007]

Since p(1) = 9, and this is the sum of the coefficients, Jack knows that 9 is at
least as big as any of p’s coefficients–in other words, the coefficients are
single digits. Jack asks for p(10), which gives the base-10 representation of
p(10). This uniquely describes the coefficients of p:
p(x) = 3x4 + 2x3 + x + 3. Hence, p(3) = 303.
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Polynomials: Problem 2

The polynomial P(x) is cubic. What is the largest value of k for which the
polynomials Q1(x) = x2 + (k − 29)x− k and Q2(x) = 2x2 + (2k − 43)x + k
are both factors of P(x)?
[AIME, 2007]

Because P(x) has three roots, and if Q1(x) and Q2(x) are both factors of P,
then they must have a common root r. Then Q1(r) + Q2(r) = 0, and

mQ1(r) + nQ2(r) = 0

for any values of m and n. Choosing m = 2 and n = −1 gives 15r + 3k = 0,
or r = −k/5. Thus,

Q1(r) =
k2

25
− (k − 29)

k
5
− k = 0

which is equivalent to 4k2 − 120k = 0. The larger root is k = 30.
[k = 30 implies Q1(x) = (x + 6)(x− 5), Q2(x) = (2x + 5)(x + 6), and
P(x) = (x + 6)(x− 5)(2x + 5).]
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Polynomials: Problem 3

If f (x) = 3x2 − 2x + 5 and f (g(x)) = 12x4 + 56x2 + 70, then compute the
product of all possible values of the sum of the coefficients of g(x).
[ARML Practice, 2007]

The sum of the coefficients of g(x) is g(1).
Since f (g(x)) = 3(g(x))2 − 2g(x) + 5, we have

f (g(1)) = 3(g(1))2 − 2g(1) + 5 = 12 + 56 + 70,

or 3(g(1))2 − 2g(1)− 133 = 0. We factor to obtain

[3g(1) + 19][g(1)− 7] = 0

so that g(1) = 7 or g(1) = −19/3. The product is −133/3.
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Telescoping Sums: Basic Facts

A telescoping sum is a sum all of whose terms cancel except the first and last.

Example. The sum
k∑

n=1

1
n(n + 1)

can be written equivalently as

k∑
n=1

(
1
n
− 1

n + 1

)
.

Then we see that the “middle” terms cancel:

1− 1
2

+
1
2
− 1

3
+ · · · − 1

k
+

1
k
− 1

k + 1
= 1− 1

k + 1
.

Rewrite the given expression.
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Telescoping Sums: Problem 1

In terms of n, evaluate
n∑

k=1

k
(k + 1)!

.

We write

k
(k + 1)!

=
k + 1− 1
(k + 1)!

=
k + 1

(k + 1)!
− 1

(k + 1)!
=

1
k!
− 1

(k + 1)!
.

Then the sum becomes(
1
1!
− 1

2!

)
+
(

1
2!
− 1

3!

)
+ · · ·+

(
1
n!
− 1

(n + 1)!

)
= 1− 1

(n + 1)!
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Telescoping Sums: Problem 2

A sequence is defined as follows: a1 = a2 = a3 = 1, and, for all positive
integers n,

an+3 = an+2 + an+1 + an.

Given that a28 = 6090307, a29 = 11201821, and a30 = 20603361, find the
remainder when

28∑
k=1

ak

is divided by 1000.
[AIME II, 2006]
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Telescoping Sums: Problem 2

Because ak+3 − ak+2 = ak+1 + ak for all positive integers k, we have

n∑
k=1

(ak+3 − ak+2) =
n∑

k=1

(ak+1 + ak)

Let Sn =
∑n

k=1 ak. Notice that
∑n

k=1(ak+3 − ak+2) is telescoping, and
becomes simply an+3 − a3. Also,

n∑
k=1

(ak+1 + ak) = (Sn − a1 + an+1) + Sn.

Thus an+3 − a3 = Sn − a1 + an+1 + Sn, so that

Sn =
1
2
(an+3 − an+1) =

1
2
(an+2 + an).

In particular, S28 = 1
2(a30 + a28) = 1

2(20603361 + 6090307) = 13346834 so
the remainder when divided by 1000 is 834.
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Arithmetic-Geometric Sums: Defintions

A sum such as the following

3
4

+
7

16
+

11
64

+ · · ·+ 3 + 4k
4k−1 + · · ·

has a numerator that is arithmetic and a denominator that is geometric.

To evaluate, we set the sum equal to S and compute S− 1
4 S.

This sum is either geometric or includes the original series.
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Arithmetic-Geometric Sums: Problem 1

Evaluate
∞∑

n=1

Fn

10n+1 , where Fn is the nth Fibonacci number, i.e.,

F1 = 1,F2 = 1,F3 = 2,F4 = 3, etc.
[GCTM State Tournament, 2005]
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Arithmetic-Geometric Sums: Problem 1

Call the sum S. Then

S =
1

102 +
1

103 +
2

104 +
3

105 + · · ·

and
1
10

S =
1

103 +
1

104 +
2

105 +
3

106 + · · ·

Then

S− 1
10

S =
1

102 +
1

104 +
1

105 +
2

106 + · · · = 1
100

+
1

100
S,

or
9
10

S =
1

100
(S + 1),

which implies 90S = S + 1 whose solution is S =
1

89
.
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Two Sums and a Product

Let a and r be positive real numbers. If
10∑

n=1

arn = 18 and
10∑

n=1

1
arn = 6, then

find
10∏

n=1

arn.

[ARML Practice, 2007]

First, note that
10∏

n=1

arn = a10r55. The second sum can be written as

6 =
1
ar

+
1

ar2 + · · ·+ 1
ar10 =

r9 + · · ·+ r + 1
ar10 =

18/(ar)
ar10 =

18
a2r11

Hence, a2r11 = 18/6 = 3. Thus,

a10r55 = (a2r11)5 = 35 = 243.
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A Number and Its Reciprocal

If x +
1
x

= 3, then find x2 +
1
x2 .

Squaring the given equation, we have

x2 + 2 +
1
x2 = 9,

so then
x2 +

1
x2 = 7.
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Fun with Coefficients

Find the sum of the coefficients obtained after expanding the product

(1− 3x + 3x2)75(1 + 5x− 5x2)125.

Let x = 1 to get (1)75(1)125 = 1.
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The Law of Cosines

The sides of a triangle are x, y, and
√

x2 + xy + y2. Find the measure of the
largest angle.
[GCTM State Tournament 2006]

The largest angle is opposite the largest side; the largest side is√
x2 + xy + y2. By the Law of Cosines, we have(√

x2 + xy + y2
)2

= x2 + y2 − 2xy cos θ

x2 + xy + y2 = x2 + y2 − 2xy cos θ

xy = −2xy cos θ

−1
2 = cos θ

θ = 120◦
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A System of Equations

Consider positive integers A, B, and C such that A2 + B− C = 100 and
A + B2 − C = 124. Find the value of C.
[GCTM State Tournament 2006]

Subtract the first equation from the second and factor to obtain

(B− A)(A + B− 1) = 24.

Since the sum of these two factors is 2B− 1 (which is odd), then one factor is
odd and the other even. Thus, we need only consider factors of 24 where one
factor is odd and the other even; the only choices are 3, 8 and 1, 24. Hence,
we have one of two systems.{

B− A = 3
A + B− 1 = 8

{
B− A = 1
A + B− 1 = 24

The first system gives A = 3, B = 6, C = −85 which we rule out since C is
not positive. The second system gives A = 12, B = 13, C = 57.
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Nested Radicals

Evaluate √
6 +

√
6 +

√
6 +
√

6 + · · ·.

Let x =

√
6 +

√
6 +

√
6 +
√

6 + · · ·. Then upon squaring both sides, we get

x2 = 6 +

√
6 +

√
6 +
√

6 + · · ·

x2 = 6 + x

x2 − x− 6 = 0

x = 3
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Summary of Basic Techniques

Roots Use Viète’s Relations – only find the roots as a last resort

Polynomials Factors, remainders, f (1)
Telescoping Series Rewrite the expression

Arithmetic-Geometric Turn it into a telescoping sum
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