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How I Used To Do Things

Began with the antiderivative

Substitution

“Integral Means Area”

Riemann sums; Sigma notation

Fundamental Theorem

Integrals Involving Logarithms/Exponentials

Areas

Trapezoids

Volume

Differential Equations
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Things I Noticed Using This Approach

No reason for the integral to exist

Heavy on symbolic manipulation

Connection with area from out of nowhere

Fundamental Theorem is unnecessary

Why use Riemann sums?

What is this “Big E”?

Why use trapezoids?

Volumes? I thought integrals meant area!

Integration is opposite of Differentiation; uniqueness of

integration is lost

No use of integrals and derivatives together
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What Is Wrong With This Approach?

Confounding the symbolic manipulation of antidifferentiation

with the calculation of areas
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How I Do Things Now

Riemann Sums

Trapezoids (and Parabolas)

Exact Area Formulas

Antiderivatives

Fundamental Theorem

Natural Logarithm/Exponentials

Hyperbolic Functions

Integration By Substitution

Applications (including Volume)

Differential Equations
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What Is Right With This Approach?

Riemann sums and trapezoids are used to approximate area

Antiderivatives are used to find exact area

Fundamental Theorem shows why this works

Mathematically correct development of the natural

logarithm

“Integral Means Sum”

Applications combine derivatives and integrals

“Sum of rates is an amount” – now diff eqs make sense

Chuck Garner Teaching Integration



Integration Then and Now
Problems

Logarithms
Summary

Areas
Antiderivatives
The Fundamental Theorem of Calculus
Applications

Outline

1 Integration Then and Now

2 Problems

Areas

Antiderivatives

The Fundamental Theorem of Calculus

Applications

3 Logarithms

4 Summary

Chuck Garner Teaching Integration



Integration Then and Now
Problems

Logarithms
Summary

Areas
Antiderivatives
The Fundamental Theorem of Calculus
Applications

Using Rectangles

x

y

6

6 x

y

6

2 4 6 x

y

6

1 2 3 4 5 6

The area under f (x)= 1
6
(36+5x2 −x3).
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Using Left, Right, and Midpoint

Problem 1

Consider y= 8−x3 over the interval [0,2].

a. Find the area between this function and the x-axis using a LRS

with 4 subintervals.

b. Find the area between this function and the x-axis using a RRS

with 4 subintervals.

c. Find the area between this function and the x-axis using a MRS

with 4 subintervals.

d. Find the average of the LRS and the RRS. Is this equal to the

MRS?
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Rectangles

x

y

a= x0 x1 x2 x3 b= x4

Using rectangles to approximate the area

Chuck Garner Teaching Integration



Integration Then and Now
Problems

Logarithms
Summary

Areas
Antiderivatives
The Fundamental Theorem of Calculus
Applications

Trapezoids

x

y

a= x0 x1 x2 x3 b= x4

Using trapezoids to approximate the area
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Parabolas

x

y

a= x0 x1 x2 x3 b= x4

Using parabolas to approximate the area
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Using Trapezoids

Problem 2

Approximate the area under f (x)= 64−x3 over the interval [0,4]

using 4 trapezoids.

Chuck Garner Teaching Integration



Integration Then and Now
Problems

Logarithms
Summary

Areas
Antiderivatives
The Fundamental Theorem of Calculus
Applications

Using Trapezoids

Problem 2

Approximate the area under f (x)= 64−x3 over the interval [0,4]

using 4 trapezoids.

Solution.

each subinterval has length ∆x= (4−0)/4= 1. Then we have

T4 =
∆x

2
[f (0)+2f (1)+2f (2)+2f (3)+ f (4)]

=
1

2
[64+2(63)+2(56)+2(37)+0] =

1

2
[376]= 184.

Had we used an LRS on 4 subintervals, our approximation would

be 220; a RRS gives 156. Note that the trapezoid estimate is the

average of the two Riemann sums.
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Trapezoid Rule and Simpson’s Rule

Problem 3

Consider the region under the curve y= 1
x2+1

and above the x-axis

over the interval [0,10]. Write out the following sums and

evaluate them to find approximations for the area of this region.

a. Use the trapezoid rule with 5 equal subintervals.

b. Use Simpson’s rule with 10 equal subintervals (i.e., five

parabolas).
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Application of Trapezoids

Problem 4

Estimate the area of this plot of land.

LAKE

40 ft

40 ft

40 ft

40 ft

40 ft

240 ft

200 ft

195 ft

205 ft

280 ft

320 ft
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Application of Trapezoids

Solution.

The trapezoid rule is what we will use to compute this.

The “function” whose area we wish to approximate is given by

the distances from the edge of the property to the lakeshore, with

∆x= 40. Hence, the approximate area of the plot of land is

A=
40

2
[240+2(200)+2(195)+2(205)+2(280)+320]

= 20[2320]= 46400 ft2.
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Application of Trapezoids

Problem 5

Estimate the surface area of the lake, where the measurements are

36 feet apart.

LAND

1
0
0

ft

1
0
2

ft

1
9
5

ft

2
0
0

ft

1
9
1

ft

2
0
2

ft

2
0
0

ft
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Application of Trapezoids

Solution.

In this case, using the trapezoid rule with ∆x= 36, we have

A=
36

2
[0+2(100)+2(102)+2(195)+2(200)

+2(191)+2(202)+2(200)+0]

= 18[2380]= 42840 ft2

as the area of the lake.
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A Tabular Problem

Problem 6

Oil is leaking out of a tanker damaged at sea. The damage to the tanker

is worsening as evidenced by the increased leakage each hour, recorded

in the following table.

Time (h) Leakage (gal/h)

0 50

1 70

2 97

3 136

4 190

5 265

6 369

7 516

8 720

a. Find upper and lower estimates

of the total quantity of oil that

has escaped after 8 hrs.

b. The tanker continues to leak

720 gal/hr after the first 8

hours. If the tanker originally

contained 25,000 gallons, about

how many more hours will

elapse in the worst and best

cases before all the oil spills?
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Exact Areas

The exact area under a bounded function f (x) on the interval

[a,b] is denoted by
∫b

a
f (x) dx.

The symbol “
∫b

a ” is called the definite integral from a to b.
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Exact Area Formulas

x

y

b

f (x)= x

The exact area under f (x)= x from 0 to b is that of a right triangle

of base b and height b which must be 1
2
(b)(b)= 1

2
b2. Hence,

∫b

0
x dx=

b2

2
.
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Properties of Areas

Theorem 1

Let f and g be bounded continuous functions on the interval [a,b],

with c ∈ [a,b]. Let k1 and k2 be real constants. Then the following

properties hold.

Linearity:

∫b

a
[k1f (x)+k2g(x)] dx= k1

∫b

a
f (x) dx+k2

∫b

a
g(x) dx

Division of Interval:

∫c

a
f (x) dx+

∫b

c
f (x) dx=

∫b

a
f (x) dx.

Reversal of Interval:

∫a

b
f (x) dx=−

∫b

a
f (x) dx.

Comparison: If f (x)≥ g(x) for all x ∈ [a,b], then

∫b

a
f (x) dx≥

∫b

a
g(x) dx.
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Using Area Formulas

As an example of these properties, consider the linearity

property. Since areas may be added or subtracted from other

areas, we can compute

∫2

0
(x3 +5x2 −x) dx=

∫2

0
x3 dx+5

∫2

0
x2 dx−

∫2

0
x dx

=
24

4
+5

(

23

3

)

−
22

2

= 4+5
(

8
3

)

−2= 52
3

.

Hence, we have a method to find the area under any polynomial!
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Antiderivatives: Keep It Simple

To evaluate the definite integral for f (x)= xp over [a,b], we write

∫b

a
xp dx=

xp+1

p+1

∣

∣

∣

∣

b

a

=
bp+1−ap+1

p+1
.

Let us find the derivative of the expression in the center:

d

dx

(

xp+1

p+1

)

=
(p+1)xp+1−1

p+1
= xp.

The derivative of this expression is the function under which we

find the area! In other words,

∫

xp dx=
xp+1

p+1
, and

d

dx

(

xp+1

p+1

)

= xp

The expression xp+1

p+1
is called the antiderivative.
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Antiderivatives: Keep It Simple

x

y

3

9

This is the graph of the

function f (x)= 3x3 −13x2 +15x.

The area under f from 0 to 3 is

∫3

0
(3x3 −13x2 +15x) dx

=
3x4

4
−

13x3

3
+

15x2

2

∣

∣

∣

∣

3

0

= 243
4

− 351
3

+ 135
2

= 45
4

.
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Antiderivatives: Keep It Simple

x

y

3

9

This is the graph of the

function f (x)= 3x3 −13x2 +15x.

The area under f from 0 to 3 is

∫3

0
(3x3 −13x2 +15x) dx

=
3x4

4
−

13x3

3
+

15x2

2

∣

∣

∣

∣

3

0

= 243
4

− 351
3

+ 135
2

= 45
4

.

Is it possible to find a rectangle

with the same area on the

same interval?
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The Mean Value Theorem for Integrals

x

y

3

15
4

9
2

9

A= 45
4

Is it possible to find a rectangle

with the same area on the

same interval?
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The Mean Value Theorem for Integrals

x

y

3

15
4

9
2

9

A= 45
4

Is it possible to find a rectangle

with the same area on the

same interval?

Yes! The area of a rectangle is

A= bh, where A is given by the

definite integral and b is the

width of the interval. In this

case, A= 45
4

and b= 3. Thus,

the correct height of the

rectangle with the same area

as that under the curve is

h =A÷b= 45
4
÷3= 15

4
.
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Average Value

Problem 7

Find the average value of the following functions on the interval

indicated.

a. f (x)= x5 −2x−1, [−1,1]

b. g(x) = cosx, [0,π]

c. f (x)= 2x−3, [1,4]

d. g(x) = (x−1)2, [0,2]
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Application of the Mean Value Theorem

Problem 8

Brayden is caught speeding. The fine is $3 per minute for each

mile per hour above the speed limit. Since he was clocked at

speeds as much as 64 mph over a 6-minute period, the judge fines

him:

($3)(no. of minutes)(mph over 55) = ($3)(6)(64−55) = $162

Brayden believes the fine is too large since he was going 55 mph

at times t= 0 and t= 6 minutes, and was going 64 mph only at

t= 3. He reckons, in fact, that his speed v is given by

v= 55+6t− t2. Brayden argues that since his speed varied, the

fine should be determined by calculus rather than by arithmetic.

What should he propose to the judge as a reasonable fine?
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Antiderivatives: Keep It Simple

Problem 9

Find antiderivatives of the following. Remember that all

differentiation rules can be viewed in reverse as integration rules.

a.

∫

1

1+x2
dx

b.

∫

sec2 x dx

c.

∫

3x−4 dx

d.

∫

2

x3
dx

e.

∫

secxtanx dx

f.

∫

−sinx dx

g.

∫

sinx dx

h.

∫

x1/3 dx

i.

∫

1
p

1−x2
dx
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Antiderivatives: Keep It Simple

Problem 10

Using the identity tan2 x+1 = sec2 x to rewrite the integrand first,

evaluate
∫

tan2 x dx.
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Integration By Substitution

Problem 11

Evaluate

∫

3x2
(

x3 +2
)7

dx.
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Integration By Substitution

Solution.

We make the following substitution: Let u= x3 +2. Then

du= 3x2 dx. Thus, the expression 3x2 dx becomes simply du.

∫

3x2
(

x3 +2
)7

dx=
∫

(

x3 +2
)7

3x2 dx=
∫

u7 du= 1
8
u8 +C.

Finally, we “undo” the substitution by replacing every u with

x3 +2, and we obtain

∫

3x2
(

x3 +2
)7

dx= 1
8

(

x3 +2
)8 +C

as the antiderivative.
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Integration By Substitution

Problem 12

Evaluate

∫

x

x+1
dx.
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Integration By Substitution

Problem 12

Evaluate

∫

x

x+1
dx.

Solution.

We use the substitution u= x+1. This leads to du= dx and

x= u−1. Thus,

∫

x

x+1
dx=

∫

u−1

u
du=

∫(

1−
1

u

)

du

=u− ln |u|+C= x+1− ln |x+1|+C

is the antiderivative.
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Integration By Substitution

Problem 13

a. Evaluate
∫

tanxsec2 x dx using the substitution u= tanx.

b. Evaluate
∫

tanxsec2 x dx using the substitution u= secx.

c. Explain why your answers to parts (a) and (b), although

looking quite different, are actually the same.
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Accumulation Functions

Any function F defined as

F(x)=
∫x

c
f (t) dt

is considered an accumulation function. The accumulation

function F “accumulates” (or, less formally, “measures”) the area

under f from the initial point t= c to the terminal point t= x.
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Accumulation Functions

Problem 14

If the rate at which water is filling a tank is given by

v(t)= t2 +
1

1+ t2
,

where v is measured in gallons per minute, then the amount of

water in the tank from t= 0 minutes to t= 1 minutes is

∫1

0

(

t2 +
1

1+ t2

)

dt= 1.119 gallons,

rounded to three decimal places.
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Accumulation Functions

Problem 14

If the rate at which water is filling a tank is given by

v(t)= t2 +
1

1+ t2
,

where v is measured in gallons per minute, then the amount of

water in the tank from t= 0 minutes to t= 1 minutes is

∫1

0

(

t2 +
1

1+ t2

)

dt= 1.119 gallons,

rounded to three decimal places.

Integrating a rate gives an amount!
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The Fundamental Theorem

Theorem 2 (The Fundamental Theorem of Calculus)

If f is continuous and bounded on the interval a≤ x≤ b, with

c ∈ [a,b], and if F is an antiderivative of f , then

d

dx

∫x

c
f (t) dt= f (x) (1)

and

∫x

c
f (t) dt=F(x)−F(c) (2)
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The Fundamental Theorem

Theorem 2 (The Fundamental Theorem of Calculus)

If f is continuous and bounded on the interval a≤ x≤ b, with

c ∈ [a,b], and if F is an antiderivative of f , then

d

dx

∫x

c
f (t) dt= f (x) (1)

and

∫x

c
f (t) dt=F(x)−F(c) (2)

Eq. 1 implies that the rate of change of the area under f is f itself.

Eq. 2 implies that the area under f is found by evaluating its

antiderivative.
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Accumulation Function Problem

Problem 15

Let F be defined by

F(x)=
∫x

0

√

t2+1 dt.

a. Compute F(0).

b. Use the trapezoid rule with 4 equal subdivisions to

approximate F(1).

c. Find the equation of the line tangent to F where x= 0.
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Accumulation Function Problem

Solution.

a. F(0) =
∫0

0

√

t2+1 dt= 0.

b. We need to find F(1)=
∫1

0

√

t2+1 dt. This is approximately

F(1)≈
0.25

2

(p
0+1+2

√

0.252 +1+2
√

0.52+1

+2
√

0.752+1+
p

1+1
)

≈ 1.151.

c. The slope is F′(x)=
p

x2 +1, so F′(0)= 1. The point is (0,0).

Thus the tangent line is y= x.
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Position, Velocity, Acceleration

Suppose p(t) is position, v(t) is velocity, and a(t) is acceleration.

Then

p′(t)= v(t)

p′′(t)= v′(t)= a(t)
∫

a(t) dt= v(t)+C
∫

v(t) dt= p(t)+C

Teach these together!
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Position, Velocity, Acceleration

Suppose p(t) is position, v(t) is velocity, and a(t) is acceleration.

Then

p′(t)= v(t)

p′′(t)= v′(t)= a(t)
∫

a(t) dt= v(t)+C
∫

v(t) dt= p(t)+C

Teach these together!
∫

v(t) dt= net distance/displacement
∫

|v(t)| dt= total distance

Speed is absolute value of velocity
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Position, Velocity, Acceleration

Suppose an object falls from a height of p0 with initial velocity v0.

In other words, when t= 0, we have p(0)= p0 and v(0)= v0. Then

we have a(t)=−g. We may integrate this with respect to t to

obtain

v(t)=
∫

a(t) dt=
∫

−g dt=−gt+C1.

Since v(0)= v0, we use this value to compute C1. So

v(0)= v0 =−g ·0+C1 implies that C1 = v0. Hence,

v(t)=−gt+v0.
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Position, Velocity, Acceleration

Now since v(t)= p′(t), we integrate once more to get

p(t)=
∫

v(t) dt=
∫

(−gt+v0) dt=−
1

2
gt2 +v0t+C2.

Once more, we use the initial value p(0)= p0 to determine the

constant: p(0)= p0 =−1
2
g ·0+v0 ·0+C2 implies C2 = p0. Finally

we have the standard position equation for a falling object,

p(t)=−
1

2
gt2 +v0t+p0,

where g is the acceleration due to gravity, v0 is the initial

velocity, and p0 is the initial position.
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Position, Velocity, Acceleration

Problem 16

A particle moves vertically along the y-axis with velocity given by

v(t)= exp(sint) for t≥ 0. [Calculator problem]

a. In which direction (up or down) is the particle moving at time

t= 2? Why?

b. Find the acceleration of the particle at time t= 2. Is the velocity

of the particle increasing at t= 2?

c. Given that y(t) is the position of the particle at time t and that

y(0)= 7, find y(2).

d. Find the total distance traveled by the particle from t= 0 and

t= 2.
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Position, Velocity, Acceleration

Solution.

a. Since v(2)= exp(sin2)≈ 2.483> 0, the particle is moving up.

b. Since v′(2)≈−1.033< 0, the velocity is decreasing.

c. y(2) = y(0)+
∫2

0
exp(sin t) dt≈ 7+4.237= 11.237.

d. The total distance is

∫2

0
|exp(sin t)| dt≈ 4.237.
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Position, Velocity, Acceleration

Suppose f is the differentiable function shown in the figure and

that the position at time t seconds of a particle moving along the

coordinate axis is p(t)=
∫t

0 f (x) dx meters.

t

f

1 2 3 4 5 6 7 8 9

−2

−1

0

1

2

3

4
f (t)
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Position, Velocity, Acceleration

Problem 17

a. What is the particle’s velocity at time t= 5?

b. Is the acceleration of the particle at time t= 5 positive or

negative?

c. What is the particle’s position at t= 3?

d. At what time during the first 9 seconds does p have its largest

value?

e. Approximately when is the acceleration zero?

f. When is the particle moving toward the origin? Away from the

origin?

g. On which side of the origin does the particle lie at time t= 9?
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Volume by Cross-Sections

If the width across the base of each cross-section is x, and the

area of each cross-section is A(x), then the volume is

V ≈∆x (A(x1)+A(x2)+·· ·+A(xn))=∆x
n
∑

i=1

A(xi).

where ∆x is the distance between cross-sections. By summing all

cross-sections over the entire length of the solid (i.e., by letting

∆x→ 0), we have

V =
∫b

a
A(x) dx

where b−a is the length of the solid and A(x) is the expression for

the area of a cross section.
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Volume by Cross-Sections

Problem 18

Find the volume of the solid in the figure. The circular base has a

radius of 1 and the cross sections perpendicular to the base are

equilateral triangles.

x

y
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Volume by Cross-Sections

Solution.

The distance from the axis to the outer edge of the base is

y=
p

1−x2. Thus, the distance across the circle (from edge to

edge) is 2y= 2
p

1−x2. This is also the base of each equilateral

triangular cross section. The area of an equilateral triangle with

side lenth s is A(s)=
p

3
4

s2. Then

A(x)=
p

3

4
(2y)2 =

p
3

4

(

2
√

1−x2
)2

=
p

3
(

1−x2
)

.

And so

V =
∫1

−1
A(x) dx=

∫1

−1

p
3

(

1−x2
)

dx=
p

3
(

x− 1
3
x3

)

∣

∣

∣

1

−1
=

4
p

3

3
.
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Volume by Cross-Sections

Problem 19

Suppose a solid has a base bounded by the line y= 4, the curve

y= x2, and the y-axis, and whose cross sections are semicircles

where the diameters of the semicircles lie in the base. What is the

volume?

y= x2

x

y
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Volume by Cross-Sections

Solution.

We seek the length of the portion of the cross sections that lie in

the base; in this case, that length is the diameter d. The length of

each diameter can be expressed by 4−x2. Recalling that the area

of a semicircle of diameter d is A(d)= π

8
d2, we have

A(x)=
π

8

(

4−x2
)2 =

π

8
(16−8x2 +x4)=π

(

2−x2 + 1
8
x4

)

for x ∈ [0,2]. Therefore,

V =
∫2

0
π

(

2−x2 + 1
8
x4

)

dx=π

(

2x− 1
3
x3 + 1

40
x5

)

∣

∣

∣

2

0
=

32π

15

is the volume.
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Volume by Cross-Sections

Problem 20

One application is in the X-ray technique of CAT scans. A CAT

scan provides a sequence of equally-spaced X-ray images of the

cross sections of a patient’s organs. The volume of an organ can be

approximated by

V ≈A(x1)∆x1 +·· ·+A(xn)∆xn.

Suppose a CAT scan of a human liver shows us X-ray slices

spaced 2 cm apart. If the areas of the cross sections are 72, 145,

139, 127, 111, 89, 63, and 22 square centimeters, then estimate

the volume of the liver.
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Volume by Washers and Disks

Disks Given a region R in the coordinate plane bounded

by f (x) and the line y= k over the interval [a,b],

then the volume of the solid generated by revolving

R about the line y= k is given by

V =π

∫b

a
[f (x)−k]2 dx.
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Volume by Washers and Disks

Disks Given a region R in the coordinate plane bounded

by f (x) and the line y= k over the interval [a,b],

then the volume of the solid generated by revolving

R about the line y= k is given by

V =π

∫b

a
[f (x)−k]2 dx.

Washers Given a region R in the coordinate plane bounded

above by f (x) and below by g(x) over the interval

[a,b], then the volume of the solid generated by

revolving R about the line y= k is given by

V =π

∫b

a

(

[f (x)−k]2 − [g(x)−k]2
)

dx.
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Volume By Shells

Shells Given a region R in the coordinate plane bounded

by f (x) and the function g(x) over the interval [a,b],

then the volume of the solid generated by revolving

R about the line x= k is given by

V = 2π

∫b

a
|x−k|(f (x)−g(x)) dx.
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Volume By Shells

x

y

−2 2

4

f (x)

x

The curve y= (x−2)2 over [0,2] revolved about the y-axis.
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Volume By Shells

Problem 21

A drinking glass is modeled by revolving about the y-axis the

region R bounded by f (x)= 1
2
(9x5 +1), the x-axis, the y-axis, and

the line x= 1. If all measurements are in inches, what is the

volume of the material needed to construct the glass?
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Volume By Shells

x

y

5

−1 1

x= 1

1
2
(9x5 +1)
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Volume By Shells

Solution.

The interval for R is [0,1]. Hence,

V = 2π

∫1

0
|x−0|(f (x)−0) dx= 2π

∫1

0

1
2
x
(

9x5 +1
)

dx

=π

∫1

0

(

9x6 +x
)

dx=π

(

9
7
x7 + 1

2
x2

)

∣

∣

∣

1

0

=π

(

9
7
+ 1

2

)

=
25π

14
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Volume By Shells

Problem 22

To make a secondary grip for an umbrella, a manufacturer

decides to place a sphere near the base of the umbrella shaft, so

that the shaft goes through the sphere. This requires that a sphere

of radius 2 cm have a hole of radius 1 cm drilled through it. What

is the volume of the resulting spherical ring?
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Define the function L(x)=
∫x

1

1

t
dt.

This function

cannot be defined for x≤ 0;
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Define the function L(x)=
∫x

1

1

t
dt.

This function

cannot be defined for x≤ 0;

has derivative L′(x)= 1
x
;
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The Natural Logarithm

Define the function L(x)=
∫x

1

1

t
dt.

This function

cannot be defined for x≤ 0;

has derivative L′(x)= 1
x
;

L(1)=
∫1

1

1

t
dt= 0;
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The Natural Logarithm

Define the function L(x)=
∫x

1

1

t
dt.

This function

cannot be defined for x≤ 0;

has derivative L′(x)= 1
x
;

L(1)=
∫1

1

1

t
dt= 0;

is positive for x> 1 and negative for 0< x< 1;
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The Natural Logarithm

Define the function L(x)=
∫x

1

1

t
dt.

This function

cannot be defined for x≤ 0;

has derivative L′(x)= 1
x
;

L(1)=
∫1

1

1

t
dt= 0;

is positive for x> 1 and negative for 0< x< 1;

is unbounded so it’s range is all real numbers.
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Is L the only function for which 1
x is its derivative?

Chuck Garner Teaching Integration



Integration Then and Now
Problems

Logarithms
Summary

The Natural Logarithm

Is L the only function for which 1
x is its derivative?

Consider L(kx) for constant k. Then

d

dx
[L(kx)] =

d

dx

∫kx

1

1

t
dt=

1

kx
·k=

1

x

so that L(kx) is also an antiderivative of 1
x
.
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The Natural Logarithm

Is L the only function for which 1
x is its derivative?

Consider L(kx) for constant k. Then

d

dx
[L(kx)] =

d

dx

∫kx

1

1

t
dt=

1

kx
·k=

1

x

so that L(kx) is also an antiderivative of 1
x
.

Hence, since two antiderivatives can at most differ by a constant,

we know that L(kx) =L(x)+C. However, when x= 1, this becomes

L(k)=L(1)+C. But we know L(1)= 0, so we have L(k) =C.

Therefore,

L(kx)=L(x)+L(k).
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The Natural Logarithm

Consider L(xp) for real p. Then

d

dx
[L(xp)]=

1

xp
·pxp−1 = p ·

1

x
= pL′(x).

So then we have that p · 1
x is the antiderivative of two functions

which must only differ by a constant; this gives L(xp)= pL(x)+C.
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Consider L(xp) for real p. Then

d

dx
[L(xp)]=

1

xp
·pxp−1 = p ·

1

x
= pL′(x).

So then we have that p · 1
x is the antiderivative of two functions

which must only differ by a constant; this gives L(xp)= pL(x)+C.

Letting x= 1 results in C= 0. Therefore, in general,

L(xp)= pL(x).
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The function L defined by

L(x)=
∫x

1

1

t
dt

is called the logarithm of x.
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The Natural Logarithm

What about bases and e?

Any function f which satisfies the property f (ab)= f (a)+ f (b)

is of the form f (x)= cL(x)= c
∫x

1
1
t dt for nonzero constant c.
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The Natural Logarithm

What about bases and e?

Any function f which satisfies the property f (ab)= f (a)+ f (b)

is of the form f (x)= cL(x)= c
∫x

1
1
t dt for nonzero constant c.

We want f (x)= cL(x)= 1 for a particular value of x. Call this

particular x-value b. Then cL(b)= 1, or c= 1/L(b).
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The Natural Logarithm

What about bases and e?

Any function f which satisfies the property f (ab)= f (a)+ f (b)

is of the form f (x)= cL(x)= c
∫x

1
1
t dt for nonzero constant c.

We want f (x)= cL(x)= 1 for a particular value of x. Call this

particular x-value b. Then cL(b)= 1, or c= 1/L(b).

The number b is called the base of the logarithm. Hence,

f (x)= c logb(x)=
L(x)

L(b)
.
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The Natural Logarithm

What about bases and e?

Any function f which satisfies the property f (ab)= f (a)+ f (b)

is of the form f (x)= cL(x)= c
∫x

1
1
t dt for nonzero constant c.

We want f (x)= cL(x)= 1 for a particular value of x. Call this

particular x-value b. Then cL(b)= 1, or c= 1/L(b).

The number b is called the base of the logarithm. Hence,

f (x)= c logb(x)=
L(x)

L(b)
.

Now, there must be a value of b such that L(b)= 1. Call this

value e.

Chuck Garner Teaching Integration



Integration Then and Now
Problems

Logarithms
Summary

The Natural Logarithm

What about bases and e?

Any function f which satisfies the property f (ab)= f (a)+ f (b)

is of the form f (x)= cL(x)= c
∫x

1
1
t dt for nonzero constant c.

We want f (x)= cL(x)= 1 for a particular value of x. Call this

particular x-value b. Then cL(b)= 1, or c= 1/L(b).

The number b is called the base of the logarithm. Hence,

f (x)= c logb(x)=
L(x)

L(b)
.

Now, there must be a value of b such that L(b)= 1. Call this

value e.

Since b and c are related by cL(b)= 1, then when b= e, we

have c= 1. Hence, L(x) = loge(x)= ln(x).
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The Exponential Function

Let E(x) be the inverse of ln(x). Then, by definition, if

ln(a)= b, then a =E(b).
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The Exponential Function

Let E(x) be the inverse of ln(x). Then, by definition, if

ln(a)= b, then a =E(b).

As an inverse, E(x) satisfies

E(ln(x))= x and ln(E(x)) = x.
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The Exponential Function

Let E(x) be the inverse of ln(x). Then, by definition, if

ln(a)= b, then a =E(b).

As an inverse, E(x) satisfies

E(ln(x))= x and ln(E(x)) = x.

Since ln(1)= 0 and ln(e)= 1, then when x= 0 and when x= e

we get

E(0)= 1 and E(1)= e.
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The Exponential Function

For reals a, b, and p and for positive reals m and n, we let

m=E(a), n=E(b), and p= ln(mn).
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The Exponential Function

For reals a, b, and p and for positive reals m and n, we let

m=E(a), n=E(b), and p= ln(mn).

Then

ln(m)= a, ln(n)= b, and E(p)=mn.
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The Exponential Function

For reals a, b, and p and for positive reals m and n, we let

m=E(a), n=E(b), and p= ln(mn).

Then

ln(m)= a, ln(n)= b, and E(p)=mn.

Hence, p= ln(mn)= ln(m)+ ln(n)= a+b, or p= a+b.
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The Exponential Function

For reals a, b, and p and for positive reals m and n, we let

m=E(a), n=E(b), and p= ln(mn).

Then

ln(m)= a, ln(n)= b, and E(p)=mn.

Hence, p= ln(mn)= ln(m)+ ln(n)= a+b, or p= a+b.

So then E(p)=E(a+b).
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The Exponential Function

For reals a, b, and p and for positive reals m and n, we let

m=E(a), n=E(b), and p= ln(mn).

Then

ln(m)= a, ln(n)= b, and E(p)=mn.

Hence, p= ln(mn)= ln(m)+ ln(n)= a+b, or p= a+b.

So then E(p)=E(a+b).

Also, E(p)=mn=E(a)E(b).
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The Exponential Function

For reals a, b, and p and for positive reals m and n, we let

m=E(a), n=E(b), and p= ln(mn).

Then

ln(m)= a, ln(n)= b, and E(p)=mn.

Hence, p= ln(mn)= ln(m)+ ln(n)= a+b, or p= a+b.

So then E(p)=E(a+b).

Also, E(p)=mn=E(a)E(b).

We have two expressions for E(p). Equate them:

E(a+b)=E(a)E(b).

Chuck Garner Teaching Integration



Integration Then and Now
Problems

Logarithms
Summary

The Exponential Function

For reals a, b, and p and for positive reals m and n, we let

m=E(a), n=E(b), and p= ln(mn).

Then

ln(m)= a, ln(n)= b, and E(p)=mn.

Hence, p= ln(mn)= ln(m)+ ln(n)= a+b, or p= a+b.

So then E(p)=E(a+b).

Also, E(p)=mn=E(a)E(b).

We have two expressions for E(p). Equate them:

E(a+b)=E(a)E(b).

If b= a then E(a)2 =E(2a).

Chuck Garner Teaching Integration



Integration Then and Now
Problems

Logarithms
Summary

The Exponential Function

For reals a, b, and p and for positive reals m and n, we let

m=E(a), n=E(b), and p= ln(mn).

Then

ln(m)= a, ln(n)= b, and E(p)=mn.

Hence, p= ln(mn)= ln(m)+ ln(n)= a+b, or p= a+b.

So then E(p)=E(a+b).

Also, E(p)=mn=E(a)E(b).

We have two expressions for E(p). Equate them:

E(a+b)=E(a)E(b).

If b= a then E(a)2 =E(2a).

Generalize: E(a)n =E(na) for real n.
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The Exponential Function

What is the derivative of E(x)?

Begin by composing ln(x) with E(x) in two ways.
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The Exponential Function

What is the derivative of E(x)?

Begin by composing ln(x) with E(x) in two ways.

First, ln(E(x)) = x.
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The Exponential Function

What is the derivative of E(x)?

Begin by composing ln(x) with E(x) in two ways.

First, ln(E(x)) = x.

Second, we also have that

ln(E(x))=
∫E(x)

1

1

t
dt.
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The Exponential Function

What is the derivative of E(x)?

Begin by composing ln(x) with E(x) in two ways.

First, ln(E(x)) = x.

Second, we also have that

ln(E(x))=
∫E(x)

1

1

t
dt.

Therefore,
∫E(x)

1

1

t
dt= x.
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The Exponential Function

What is the derivative of E(x)?

Begin by composing ln(x) with E(x) in two ways.

First, ln(E(x)) = x.

Second, we also have that

ln(E(x))=
∫E(x)

1

1

t
dt.

Therefore,
∫E(x)

1

1

t
dt= x.
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The Exponential Function

What is the derivative of E(x)?

Begin by composing ln(x) with E(x) in two ways.

First, ln(E(x)) = x.

Second, we also have that

ln(E(x))=
∫E(x)

1

1

t
dt.

Therefore,
∫E(x)

1

1

t
dt= x.

Taking derivatives of both sides, we get

1

E(x)
·E′(x)= 1, or E′(x)=E(x).
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The Exponential Function

The inverse of the natural logarithm function is the exponential

function and is denoted exp(x).

Let a= 1 in E(a)n =E(na).
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The Exponential Function

The inverse of the natural logarithm function is the exponential

function and is denoted exp(x).

Let a= 1 in E(a)n =E(na).

Recall E(1)= e.
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The Exponential Function

The inverse of the natural logarithm function is the exponential

function and is denoted exp(x).

Let a= 1 in E(a)n =E(na).

Recall E(1)= e.

Then E(n)=E(1)n = en.
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The Exponential Function

The inverse of the natural logarithm function is the exponential

function and is denoted exp(x).

Let a= 1 in E(a)n =E(na).

Recall E(1)= e.

Then E(n)=E(1)n = en.

This gives us another way to denote the exponential function

f (x)= exp(x): f (x)= ex.
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Summary

One Over-riding Theme

There must be a reason for everything we do in calculus.

Begin with the area problem

Move into the need for exact areas

Intuitively develop the power rule for antiderivatives as

exact area formuals

Make connections with and through the Fundamental

Theorem

Show what we can do with integrals
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Resources

The MAA’s Resources for Calculus Collection, five volumes

The Georgia Association of AP Math Teachers:

http://gaapmt.wikispaces.com

College Board: http://www.collegeboard.com

This presentation is housed at my website:

http://www.drchuckgarner.com
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