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How I Used To Do Things

◮ Sequences

◮ Geometric Series

◮ Convergence Tests (in one day!: Divergence, Integral,

p-Series, Comparisons, Ratio, Root)

◮ Alternating Series (with absolute/conditional

convergence)

◮ Power Series

◮ Maclaurin Series

◮ Taylor Series
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Things I Noticed Using This Approach

◮ Confusion between convergence of sequences and

convergence of series

◮ Not clear what the “big E” means

◮ What’s the point of Taylor series?

◮ Why approximate anything – don’t we have calculators?

◮ Why do we need infinite series at all?
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Things I Noticed Using This Approach

◮ Confusion between convergence of sequences and

convergence of series

◮ Not clear what the “big E” means

◮ What’s the point of Taylor series?

◮ Why approximate anything – don’t we have calculators?

◮ Why do we need infinite series at all?

Infinite Series feels “tacked on” to the end of the course.
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How I Do Things Now

◮ Use series ideas and concepts whenever possible before
teaching series
◮ After derivatives: find limits of sequences
◮ Before Riemann sums: evaluate finite series and infinite

geometric series; use the divergence test, partial sums
◮ With applications: approximating polynomials

◮ Make all the preliminaries explicit

◮ Integral Test and p-Series Test

◮ Comparison Tests

◮ Alternating Series Test and Error Bound, absolute and

conditional convergence

◮ Ratio and Root Tests

◮ Power Series

◮ Manipulation of series

◮ Taylor Series
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How I Do Things Now

◮ Use series ideas and concepts whenever possible before
teaching series
◮ After derivatives: find limits of sequences
◮ Before Riemann sums: evaluate finite series and infinite

geometric series; use the divergence test, partial sums
◮ With applications: approximating polynomials

◮ Make all the preliminaries explicit

◮ Integral Test and p-Series Test

◮ Comparison Tests

◮ Alternating Series Test and Error Bound, absolute and

conditional convergence

◮ Ratio and Root Tests

◮ Power Series

◮ Manipulation of series

◮ Taylor Series

◮ In red specifically mentioned in the Course Description
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What Is Right With This Approach?

◮ Builds on previous knowledge

◮ Provides a rationale for wanting to know about

convergence

◮ Taylor series is the point of knowing series!

◮ Takes one more day, but the understanding is so much

better



An Approach to

Teaching Infinite

Series

Chuck Garner

Series. . . Then

Series. . . Now

Pre-Series Topics

Sequences

Finite Series and Infinite

Geometric Series

Approximating Polynomials

Convergence Tests

Formal Preliminaries

Integral Test, p-Series Test

Comparisons, Alternating

Series

Ratio and Root

Power Series

Manipulation of

Series

Taylor Series

Summary

Outline

Series. . . Then

Series. . . Now

Pre-Series Topics

Sequences

Finite Series and Infinite Geometric Series

Approximating Polynomials

Convergence Tests

Formal Preliminaries

Integral Test, p-Series Test

Comparisons, Alternating Series

Ratio and Root

Power Series

Manipulation of Series

Taylor Series

Summary



An Approach to

Teaching Infinite

Series

Chuck Garner

Series. . . Then

Series. . . Now

Pre-Series Topics

Sequences

Finite Series and Infinite

Geometric Series

Approximating Polynomials

Convergence Tests

Formal Preliminaries

Integral Test, p-Series Test

Comparisons, Alternating

Series

Ratio and Root

Power Series

Manipulation of

Series

Taylor Series

Summary

Sequences

I teach sequences after teaching derivatives and l’Hôpital’s

Rule.

◮ Approach sequences as an application of l’Hôpital’s Rule

and infinite limits

◮ Define convergence and divergence

◮ Introduce the idea of domination: for example, nn

dominates n!

nn≫ n!
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Sequences

I teach sequences after teaching derivatives and l’Hôpital’s

Rule.

◮ Approach sequences as an application of l’Hôpital’s Rule

and infinite limits

◮ Define convergence and divergence

◮ Introduce the idea of domination: for example, nn

dominates n!

nn≫ n!

Typical question: Does
n
p

n! dominate arctan n ?
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Finite Series

I teach finite series before teaching integration/Riemann

sums.

◮ Compute with summation notation

◮ Determine formulas for
∑

n,
∑

n2,
∑

n3

◮ Determine sums of arithmetic and geometric series
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Geometric Series

I teach geometric series right after finite series.

◮ Partial sums; notion of series convergence

◮ If the series
∑∞

n=1 an converges, then an→ 0 as n→∞.

(This is the contrapositive of the divergence test.)

◮ Show harmonic series diverges

◮ Infinite geometric series

◮ Applications of geometric series
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Geometric Series

I teach geometric series right after finite series.

◮ Partial sums; notion of series convergence

◮ If the series
∑∞

n=1 an converges, then an→ 0 as n→∞.

(This is the contrapositive of the divergence test.)

◮ Show harmonic series diverges

◮ Infinite geometric series

◮ Applications of geometric series

Typical question: The series

∞
∑

n=0

3(2x− 1)n

is geometric. What values of x lead to convergence?
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Approximating Polynomials

I teach approximating polynomials with applications of the

derivative.

The tangent line is a linear approximation L(x) to a function

f(x) (also called the linearization).

Problem 1

Use a linear approximation to estimate
p

77.
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Approximating Polynomials

I teach approximating polynomials with applications of the

derivative.

The tangent line is a linear approximation L(x) to a function

f(x) (also called the linearization).

Problem 1

Use a linear approximation to estimate
p

77.

Solution.

The tangent line to f(x) =
p

x centered at x = 81 is

L(x) = f(81)+ f ′(81)(x− 81) = 9+
1

2
p

81
(x− 81).

Then f(77)≈ L(77) = 9+ 1

18
(77− 81) = 9− 2

9
= 87

9
.
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Approximating Polynomials

A linear approximation to f matches the slope of f . A

quadratic approximation to f should match both the slope

and the concavity of f . So we assume the approximation has

the form

Q(x) = L(x) + C(x− a)2

where a is the center. Then Q′′(x) = 2C. Since we want

Q′′(a) = f ′′(a), we find that C = 1

2
f ′′(a). Then

Q(x) = f(a) + f ′(a)(x− a) +
1

2
f ′′(a)(x− a)2.
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Approximating Polynomials

By the same logic, a cubic approximator should match the

third derivative of f . So we assume the approximation has

the form

B(x) = L(x) +Q(x) + C(x− a)3

where a is the center. Then B′′′(x) = 6C. Since we want

B′′′(a) = f ′′′(a), we find that C = 1

6
f ′′′(a). Then

B(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2+

f ′′′(a)

6
(x− a)3.



An Approach to

Teaching Infinite

Series

Chuck Garner

Series. . . Then

Series. . . Now

Pre-Series Topics

Sequences

Finite Series and Infinite

Geometric Series

Approximating Polynomials

Convergence Tests

Formal Preliminaries

Integral Test, p-Series Test

Comparisons, Alternating

Series

Ratio and Root

Power Series

Manipulation of

Series

Taylor Series

Summary

Outline

Series. . . Then

Series. . . Now

Pre-Series Topics

Sequences

Finite Series and Infinite Geometric Series

Approximating Polynomials

Convergence Tests

Formal Preliminaries

Integral Test, p-Series Test

Comparisons, Alternating Series

Ratio and Root

Power Series

Manipulation of Series

Taylor Series

Summary



An Approach to

Teaching Infinite

Series

Chuck Garner

Series. . . Then

Series. . . Now

Pre-Series Topics

Sequences

Finite Series and Infinite

Geometric Series

Approximating Polynomials

Convergence Tests

Formal Preliminaries

Integral Test, p-Series Test

Comparisons, Alternating

Series

Ratio and Root

Power Series

Manipulation of

Series

Taylor Series

Summary

Preliminaries

Explicitly define:

◮ Partial Sums

◮ Divergence Test

◮ Geometric Series Test
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Integral Test

Theorem 1 (The Integral Test)

Suppose f is a positive, decreasing, continuous function on the

interval [1,∞) and let an = f(n). Then if
∫∞

1
f(x) dx converges

(diverges), then
∑∞

n=1 an converges (diverges).

Use the Integral Test to prove (again) that the harmonic

series diverges.
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Integral Test

Theorem 2 (Remainder Estimate for the Integral Test)

If the infinite series
∑

an converges by the Integral Test, then it

has sum S and

∫ ∞

k+1

f(x) dx ≤ Rk ≤
∫ ∞

k

f(x) dx

where Rk = S− sk is the remainder and f(n) = an.

Problem 2

What is the error bound in using
∑5

n=1
1

n2 to estimate the value

of
∑∞

n=1
1

n2 ?
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Integral Test

Problem 3

What is the error bound in using
∑5

n=1
1

n2 to estimate the value

of
∑∞

n=1
1

n2 ?

Solution.

The estimate has an error bound

∫ ∞

6

1

x2
dx ≤ R5 ≤
∫ ∞

5

1

x2
dx,

or
1

6
≤ R5 ≤

1

5
.

Hence, the difference between the exact infinite sum S and

the estimate
∑5

n=1
1

n2 ≈ 1.4636 is in the interval

[0.167,0.2]. (The remainder is, in fact, about 0.1813.)
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p-Series Test

Theorem 3 (p-Series Test)

The infinite series
∑

1/np, where p is a positive real number,

converges if p> 1 and diverges if p≤ 1.
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Integral Test

Problem 4

How many terms of the series
∑∞

n=1
1

n5 are needed so that the

error is less than 0.01?

Solution.

we require

Rk ≤
∫ ∞

k

1

x5
dx < 0.01.

Hence, we compute

∫ ∞

k

1

x5
dx = lim

b→∞

�

−
1

4b4
+

1

4k4

�

=
1

4k4
< 0.01=

1

100
.

So 100< 4k4 implies 25< k4. Thus we need k= 3 (or

more) terms.
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Direct Comparison and Limit Comparison

Comparison Tests are based on dominance.

Theorem 4 (The Direct Comparison Test)

Let
∑∞

n=1 an and
∑∞

n=1 bn be positive series and suppose

bn≫ an. Then if
∑∞

n=1 bn converges, so does
∑∞

n=1 an.
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Direct Comparison and Limit Comparison

Theorem 5 (The Limit Comparison Test)

Let
∑∞

n=1 an and
∑∞

n=1 bn be two series such that an ≥ 0 and

bn > 0. Let

lim
n→∞

an

bn

= L.

Then we have the following three cases.

1. If 0< L <∞, then
∑

an and
∑

bn either both converge or

both diverge.

2. If L =∞ and
∑

an converges, then
∑

bn also converges.

3. If L = 0 and
∑

an diverges, then
∑

bn also diverges.
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Direct Comparison and Limit Comparison

How do you decide what to use to compare? Check the limit

as n→∞ to get a p-Series. Since

n
p

n5+ n3− 1
→

n

n5/2
→

1

n3/2

we see that

∞
∑

n=1

n
p

n5+ n3− 1
≤
∞
∑

n=1

1

n3/2
.

Thus,
∑

n/
p

n5+ n3 − 1 converges since
∑

1/n3/2

converges.
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Alternating Series

x

y

1 2 3 4 5 6
(a)

x

y

1 2 3 4 5 6
(b)

?

(a) Partial sums of

∞
∑

n=1

(−1)n+1
1

n

(b) Partial sums of

∞
∑

n=1

(−1)n+1
n+ 1

n
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Alternating Series

Theorem 6 (The Alternating Series Test)

The alternating series

∞
∑

n=0

(−1)nan

converges if all the following are satisfied.

1. All terms of an are positive.

2. The sequence {an} is decreasing.

3. The sequence {an} approaches zero as n→∞.
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Alternating Series

Theorem 6 (The Alternating Series Test)

The alternating series

∞
∑

n=0

(−1)nan

converges if all the following are satisfied.

1. All terms of an are positive.

2. The sequence {an} is decreasing.

3. The sequence {an} approaches zero as n→∞.

Theorem 7 (Alternating Series Error Bound)

Let
∑

(−1)nan be a convergent alternating series. The error in

using the kth partial sum sk to estimate the sum S is less than

the absolute value of the (k+ 1)th term of the sequence ak+1.
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Simple definition of absolutely convergent:
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|an| converges, while
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an does not.
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Absolutely Convergent

Simple definition of absolutely convergent:

If
∑

|an| converges, so does
∑

an.

Conditionally convergent means that
∑

|an| converges, while
∑

an does not.

Problem 5

We wish to determine the absolute convergence, conditional

convergence, or divergence of

∞
∑

n=1

sin n

n5
.
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Absolutely Convergent

Simple definition of absolutely convergent:

If
∑

|an| converges, so does
∑

an.

Conditionally convergent means that
∑

|an| converges, while
∑

an does not.

Problem 5

We wish to determine the absolute convergence, conditional

convergence, or divergence of

∞
∑

n=1

sin n

n5
.

Solution.

Since

�

�

�

sinn

n5

�

�

� <
1

n5 and
∑

1

n5 is a convergent p-Series, the

series
∑

�

�

�

sinn

n5

�

�

� converges absolutely.



An Approach to

Teaching Infinite

Series

Chuck Garner

Series. . . Then

Series. . . Now

Pre-Series Topics

Sequences

Finite Series and Infinite

Geometric Series

Approximating Polynomials

Convergence Tests

Formal Preliminaries

Integral Test, p-Series Test

Comparisons, Alternating

Series

Ratio and Root

Power Series

Manipulation of

Series

Taylor Series

Summary

Ratio Test

In a geometric series, the ratio of consecutive terms is r: For
∑

arn,

ark+1

ark
= r.

The Ratio Test relies on something similar: For
∑

an, we

check

lim
k→∞

ak+1

ak
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Ratio Test

In a geometric series, the ratio of consecutive terms is r: For
∑

arn,

ark+1

ark
= r.

The Ratio Test relies on something similar: For
∑

an, we

check

lim
k→∞

ak+1

ak

.

Theorem 8 (The Ratio Test)

For the series
∑∞

n=1 an, define

r= lim
n→∞

�

�

�

�

an+1

an

�

�

�

�

.

If r< 1, then
∑

an converges absolutely; if r> 1, then
∑

an

diverges.
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Root Test

Theorem 9 (The Root Test)

For the series
∑∞

n=1 an, define

r= lim
n→∞

n
p

|an|.

If r< 1, then
∑

an converges absolutely; if r> 1, then
∑

an

diverges.
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Root Test

Theorem 9 (The Root Test)

For the series
∑∞

n=1 an, define

r= lim
n→∞

n
p

|an|.

If r< 1, then
∑

an converges absolutely; if r> 1, then
∑

an

diverges.

Any series in which you could ue the Ratio Test, you can also

use the Root Test – as long as you know
n
p

n!→∞ as n→∞.

(Use the Root Test for geometric series too!)
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Power Series

Power series are functions of x.

◮ Basic power series is geometric

◮ Geometric series give our intuitive notion of an interval

of convergence

◮ Give the students three examples. . .
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Power Series

Problem 6

Determine values of x for which the power series converges.

∞
∑

n=0

(x− 1)n

n!

Solution.

We apply the Root Test:

lim
n→∞

n

È

�

�

�

�

(x− 1)n

n!

�

�

�

�

= |x− 1| lim
n→∞

�

�

�

�

1
n
p

n!

�

�

�

�

= |x− 1| · 0= 0.

This limit will always be zero no matter the value of x, we

see that this power series converges absolutely for all real

numbers x.
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Power Series

Problem 7

Determine values of x for which the power series converges.

∞
∑

n=0

n!(x+ 2)n

Solution.

By the Root Test, we have

lim
n→∞

n
p

|n!(x+ 2)n| = |x+ 2| lim
n→∞

n
p

|n!|=∞.

Since this limit is infinite, we see that this power series

diverges for all real numbers, except for the trivial value

x =−2. So, as opposed to converging for all real numbers in

the previous example, this series converges only for a single

value.
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Power Series

Problem 8

Determine values of x for which the power series converges.

∞
∑

n=0

(x− 4)n

n+ 1

Solution.

We use the Root Test.

lim
n→∞

n

È

�

�

�

�

(x− 4)n

n+ 1

�

�

�

�

= |x−4| lim
n→∞

n

È

�

�

�

�

1

n+ 1

�

�

�

�

= |x−4| ·1= |x−4|

This series will converge if the limit is less than 1; hence, we

must have |x− 4| < 1 for convergence. Thus,

−1< x− 4< 1, or 3< x < 5, are the values of x that result

in a convergent series.
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Interval of Convergence

However, the last problem is incomplete. The Root Test is

inconclusive if the limit is equal to 1. So what happens if

x = 3 or x = 5?

◮ If x = 3, the power series becomes
∑

(−1)n/(n+ 1)

which converges by the Alternating Series Test.

◮ If x = 5, the power series becomes
∑

1/(n+ 1) which

diverges by the Integral Test.

Therefore, the values of x which result in
∑∞

n=0
(x−4)n

n+1
being

a convergent series are in the interval 3≤ x < 5.
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Radius of Convergence

Theorem 10 (Radius of Convergence of Power Series)

Let
∑

an(x− a)n be a power series. If

lim
n→∞

�

�

�

�

an+1

an

�

�

�

�

= r or lim
n→∞

n
p

|an| = r

is a positive real number, then 1

r
is the radius of convergence of

the power series; if r= 0, then∞ is the radius of convergence;

and if r=∞, then 0 is the radius of convergence.
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Manipulation of Series

From the geometric series
∑

xn = 1

1−x
, we may get – on the

interval of convergence – power series for

◮
1

1−x2 by replacing x2 for x in 1

1−x

◮
1

1+x
by replacing −x for x in 1

1−x

◮
1

1+x2 by replacing −x2 for x in 1

1−x

◮
1

(1−x)2
by differentiating 1

1−x

◮ − ln |1− x| by integrating 1

1−x

◮ arctan x by integrating 1

1+x2

◮ ln |1+ x| by integrating 1

1+x

◮
x2

(1+x)3
by differentiating 1

1+x
twice and then multiplying

by x2.
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Manipulation of Series

From the geometric series
∑

xn = 1

1−x
, we may get – on the

interval of convergence – power series for

◮
1

1−x2 by replacing x2 for x in 1

1−x

◮
1

1+x
by replacing −x for x in 1

1−x

◮
1

1+x2 by replacing −x2 for x in 1

1−x

◮
1

(1−x)2
by differentiating 1

1−x

◮ − ln |1− x| by integrating 1

1−x

◮ arctan x by integrating 1

1+x2

◮ ln |1+ x| by integrating 1

1+x

◮
x2

(1+x)3
by differentiating 1

1+x
twice and then multiplying

by x2.

Check endpoints!
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Taylor Series

Taylor Series is the finale!

◮ Reintroduce the “approximating polynomial” idea as

the first few terms of a power series

◮ Generate more terms of power series through the

notion that f (n)(a) = n!C

◮ In this way, the idea of Taylor series is simply a

continuation of what came before
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Taylor Series

Taylor Series is the finale!

◮ Reintroduce the “approximating polynomial” idea as

the first few terms of a power series

◮ Generate more terms of power series through the

notion that f (n)(a) = n!C

◮ In this way, the idea of Taylor series is simply a

continuation of what came before

◮ Now put it all together: Taylor series constitute
◮ approximating polynomials
◮ questions of convergence
◮ power series and intervals of convergence
◮ differentiation
◮ manipulation of series
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Taylor Series

Theorem 11 (Taylor’s Theorem)

Let f be a function such that f (k+1)(x) exists for all x in the

interval (a− r,a+ r). Then

Pk(x) = f(a)+f ′(a)(x−a)+
f ′′(a)

2!
(x−a)2+· · ·+

f (k)(a)

k!
(x−a)k

is the kth degree Taylor polynomial of f at a, and

Rk(x)≤
|f (k+1)(c)|
(k+ 1)!

|x− a|k+1

is the Lagrange form of the remainder, where c is a number

between a and x which maximizes f (k+1). Moreover, assume f

has derivatives of all orders. Then f(x) =
∑∞

n=0

f (n)(a)

n!
(x− a)n if

and only if Rk→ 0 as k→∞.
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Taylor Series

Problem 9

Use the third-order Taylor polynomial for f(x) = lnx centered

at x = 1 to approximate ln 1.06.

Solution.

The Taylor polynomial is

P3(x) = x− 1−
1

2
(x− 1)2 +

1

3
(x− 1)3

so the approximation is

P3(1.06) = 0.06−
0.062

2
+

0.063

3

= 0.06− 0.0018+ 0.000072= 0.058272.
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Taylor Series

Note that the Lagrange form of the remainder,

Rk(x)≤
|f (k+1)(c)|
(k+ 1)!

|x− a|k+1,

is another remainder which is simply the next term of the

series.

◮ Major difference: we maximize the numerator on the

interval [a,x] to get the largest bound.
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Taylor Series

Problem 10

Determine the error in using the third-order Taylor polynomial

for f(x) = lnx centered at x = 1 to approximate ln 1.06.

Solution.

The remainder is

R3(x)≤
|f (4)(c)|

4!
|x− 1|4.

The fourth derviative of lnx is −6/x4 whose maximum value

on the interval [1,1.06] is when x = 1; this leads to a

numerator of −6. So the error must be less than

R3(1.06)≤
|− 6|

4!
|0.06|4 =

0.00001296

4
= 0.00000324.
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One Over-riding Theme

Don’t wait for the end of the year to introduce series

concepts!

◮ Start as early as possible
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One Over-riding Theme

Don’t wait for the end of the year to introduce series

concepts!

◮ Start as early as possible

◮ Talk about convergence early – even with limits



An Approach to

Teaching Infinite

Series

Chuck Garner

Series. . . Then

Series. . . Now

Pre-Series Topics

Sequences

Finite Series and Infinite

Geometric Series

Approximating Polynomials

Convergence Tests

Formal Preliminaries

Integral Test, p-Series Test

Comparisons, Alternating

Series

Ratio and Root

Power Series

Manipulation of

Series

Taylor Series

Summary

One Over-riding Theme

Don’t wait for the end of the year to introduce series

concepts!

◮ Start as early as possible

◮ Talk about convergence early – even with limits

◮ Use more than the tangent line to approximate

functions



An Approach to

Teaching Infinite

Series

Chuck Garner

Series. . . Then

Series. . . Now

Pre-Series Topics

Sequences

Finite Series and Infinite

Geometric Series

Approximating Polynomials

Convergence Tests

Formal Preliminaries

Integral Test, p-Series Test

Comparisons, Alternating

Series

Ratio and Root

Power Series

Manipulation of

Series

Taylor Series

Summary

One Over-riding Theme

Don’t wait for the end of the year to introduce series

concepts!

◮ Start as early as possible

◮ Talk about convergence early – even with limits

◮ Use more than the tangent line to approximate

functions

◮ Taylor series and the Lagrange remainder should be

easy to learn and a fitting conclusion
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Resources

◮ The MAA’s Resources for Calculus Collection, five volumes

◮ The Georgia Association of AP Math Teachers:

http://gaapmt.wikispaces.com

◮ College Board: http://www.collegeboard.com

◮ This presentation is housed at my website:

http://www.drchuckgarner.com
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