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1 Background

This article arose from conversations between the first two authors. In discussing

the functions ln(x) and ex in introductory calculus, one of us made good use

of the inverse function properties and the other had a desire to introduce the

natural logarithm without the classic definition of same as an integral. It is im-

portant to introduce mathematical topics using a minimal number of definitions

and postulates/axioms when results can be derived from existing definitions and

postulates/axioms. These are two of the ideas motivating the article. Thus mo-

tivated, the authors compared manners with which to begin discussion of the

natural logarithm and exponential functions in a calculus class.

A related issue is the use of an integral to define a function g in terms of an

integral such as g(x) =
∫ x
c f (t) dt. We believe that this is something that students

should understand and be exposed to prior to more advanced “surprises” such as

Si(x) =

∫ x

0

sin(t)

t
dt.

In particular, the fact that

ln(x) =

∫ x

1

1

t
dt

is extremely important. But must that fact be introduced as a definition? Can

the natural logarithm function arise in an introductory calculus course without

the classic definition in many Calculus texts given by
∫x
1 (1/t) dt? Can use of

the classic definition of a derivative of a function, combined with properties of

that function, lead to a different way to approach the applications of calculus to

the logarithmic and exponential functions? Do prior precalculus understandings

of logarithms and inverse functions help us to approach calculus? And, related

to this exposition, does the Mean Value Theorem (MVT) actually have a useful

application? Perhaps some answers to these questions are presented below.
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2 Logarithms Before Calculus Existed

Values of trigonometric functions, to many decimal places, were calculated and

available hundreds of years ago. Although these were not necessarily in a form

we would recognize in the modern era, precision in calculations was becoming

more and more important during the 16th and 17th centuries. This was due in

no small part to observations made by astronomers. Using this data in ways that

required further calculations was tedious, laborious and time-consuming. Enter

John Napier and Henry Briggs. Napier’s work involved the use of a base and

an exponent, and then using the exponents to aid in calculations. The basis for

this early work with what we know today as logarithms was closely related to

1/e in one case and was 10 the other case. Today, we would not recognize the

approaches taken by these earlier mathematicians.

3 A Brief History of Logarithms

Logarithms are presently defined as being the power to which a particular base

must be raised in order to produce a given number, but why is this important?

How, exactly, did logarithms even become a part of our present-day mathematics?

The history of logarithms, and the history of mathematics in general, is not

one that is often considered by students of the subject. For most, the detailed

account of how the logarithm came to be, just as any other topic in mathemat-

ics, is one that is seemingly unimportant in being able to learn the concept. As

unimportant as it may seem, the origins of logarithms are entirely essential to un-

derstanding them as a mathematical topic. The first publication about logarithms

was released in 1614 by a Scottish mathematician named John Napier. Interest-

ingly enough, Napier began his life as a religious activist who fully expected his

name to be remembered for his Protestant efforts against the Catholic Church.

However, during a revolutionary time in the scientific community, he found him-

self drawn to new mathematical endeavors.

With new discoveries involving planetary motion and mechanics as well as

events such as the circumnavigation of the globe, the seventeenth-century scien-

tific community was accruing a great deal of numerical data. Napier took up the

challenge of finding a way to manage the burdensome amount. His result? The

logarithm.

While it is unknown exactly how John Napier began his work that would ulti-

mately lead to the revolution that was the logarithm, it is believed that his initial

ideas may have stemmed from the addition and subtraction rules for the sines of

angles and Michael Stifel’s work in geometric and arithmetic progression. Knowl-

edge of geometry, trigonometry, and kinematics also helped Napier in developing

logarithms.

It is important to note Napier’s kinematic approach to making his tables of

logarithms. His consideration of velocity and distance allowed him to ultimately

conclude that a point on a line moves geometrically as long as its velocity remains

proportional to its distance from the right end of the line. This conclusion was
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necessary for his process for inventing the logarithm as well as for forming his

definition of the logarithm. Napier’s goal was to make the sines of angles easier to

calculate. To that end, Napier defined the logarithm of any sine to be the number

which increased arithmetically with a constant velocity as the radius decreased

geometrically during the time in which the radius decreased to a given number.

Napier invented his logarithms through a process of creating two number

lines—one increasing in an arithmetic sequence and the other decreasing with

a geometric sequence from the right end of the line. He took much of his inspi-

ration from the Powers Tables, and his greatest struggle with initially developing

the logarithm was choosing a base that was small enough, but not too small, to

fill in the gaps of these tables.

Due to his concerns for minimizing the use of the decimal fraction in his

work—a concept which had only recently been introduced into Europe—Napier

selected 1 − 10−7 as the base for his tables, and then multiplied this by 107. Be-

cause the predominant goal of Napier was to lessen the work involved in trigono-

metric calculations, he found his base by dividing the radius of the unit circle into

ten-million parts, a common practice in trigonometry at the time. By subtracting

the radius of the unit circle and the unit found by dividing the radius, Napier cal-

culated the number closest to 1, and he used this number as the common ratio in

the construction of his logarithm tables.

Napier spent the following twenty years of his life subtracting each successive

term’s 107th part from the initial 107—that is, by computing 107(1 − 10−7)L for

L = 1,2,3, . . . ,100—yielding his first table with one hundred one terms. Next, he

created a table with fifty-one terms. This table also started with 107, but Napier

found the proportion for it by calculating the ratio of the previous number and the

first one in his initial table. Napier created three more tables with similar ratios.

The last table, which had sixty-eight terms, had a final entry that was nearly half of

Napier’s original number. Napier called his invention the logarithm, meaning ratio

number. Related to Napier’s choice of a base is the fact that (1−10−7)107
≈ 1/e, an

important connection to what we know today as the natural logarithm. However,

someone else had another idea that became a useful manner in which logarithms

could be applied to calculations for over 300 years.

After reading Napier’s publication Description of the Marvelous Canon of Log-

arithms, an Englishman by the name of Henry Briggs recognized the great benefit

that the logarithm could have on scientific calculations of the time. The logarithm

tables—which were used by finding the logarithm of a desired number and using

it to perform calculations to obtain antilogarithms—allowed scientists to multi-

ply any numbers together by simply performing addition. Briggs began working

to improve the original ideas of the logarithm, and in the early 1600s, he visited

Napier in Scotland to collaborate on logarithms.

It was during the collaborations that significant changes were made to Napier’s

logarithm, and two forms of the logarithm were created. Briggs convinced Napier

to modify his logarithm, with base 1/e, by using a base ten system meaning

log 10 = 1. Together, Napier and Briggs adjusted the natural logarithm by com-

paring points L and x on a graduated straight line. They designated point L for

the logarithm in uniform motion from negative to positive infinity. Point x was
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used as a representation of sine in motion from zero to infinity with its speed

proportional to its distance. The common logarithm was produced by limiting

the motion of the points using L = 1 at x = 10 with the condition that L = 0 when

x = 1.

The change of the base differentiated Napier’s original logarithm into what is

now known as the natural logarithm or Napierian logarithm. Because the base

ten system came at the suggestion of Briggs, logarithms now using base 10 are

referred to as Briggsian logarithms or common logarithms.

While Napier ingeniously invented the concept of the logarithm, it was the writ-

ings of Briggs that expounded on the new concept and significantly contributed

to the widespread use of logarithms in Europe during the seventeenth century.

Briggs’ tables of common logarithms, which were completed in 1628 by Adrian

Vlacq, also became the new basis for logarithm tables that were used well into the

twentieth century.

4 Precalculus Understandings

Logarithms were well known prior to the time of Newton and Leibnitz. The basic

properties of logarithms should be known to students pre-calculus, or at the very

least, be simple to review in a calculus class. These include ln(ab) = ln(a)+ln(b),

ln(ap) = p ln(a), and logb(a) = log(a)/ log(b). Any use of calculus involving a

natural log should imply these properties.

5 Mean Value Theorem Application

Too often, the MVT is seen by students only as showing us a magical place where

the slope of a tangent line is the same as the slope of a secant line. We use the MVT

as follows: If f ′(x) = 0 on (a, b) and x1 < x2 ∈ (a, b), then for any c ∈ (x1, x2),

0 = f ′(c) =
f (x2)− f (x1)

x2 − x1

which implies f (x2) = f (x1) = C, a constant. We define the function h = f −g. If

f ′(x) = g′(x) and h′(x) = 0 then h = C implies f = g + C. We use this fact, that

if functions have equivalent derivatives the functions differ by a constant, several

times below.

6 The Functions ex and ln(x) in Calculus

The purpose of this section of the article is to establish the derivatives of ex and

ln(x) as well as to derive the integral form of ln(x) and show that this integral

satisfies the known precalculus properties of the logarithm. Part I shows that the

base e is needed in order for the exponential function to have a derivative equal
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to itself. Part II introduces the inverse of the function ex and its derivative. Part

III shows the equivalence of the inverse of ex to the well-known integral. Part

IV shows that ln(e) = 1. Part V calculates the derivative of y = ax , and Part VI

verifies that the precalculus properties of the logarithm follow from its integral

form. The corollary to the MVT mentioned above is used once in Part III and

several times in Part VI.

Part I: Calculus with f (x) = ax , a > 0 and a ≠ 1; we establish a special value of

a.

1. By the definition of the derivative,

d

dx
ax = lim

h→0

ax+h − ax

h
= ax lim

h→0

ah − 1

h
.

The function y = ax will have itself as its derivative if and only if

lim
h→0

ah − 1

h
= 1.

2. For h ≈ 0, (ah − 1)/h ≈ 1. Solving for a we obtain a ≈ (1+ h)1/h.

3. If

lim
h→0

ah − 1

h
= 1 then a = lim

h→0
(1+ h)1/h

which is equivalent to

lim
x→∞

(

1+
1

x

)x

.

4. This famous number is known as e. We have that
d

dx
ex = ex .

5. The number a which makes limh→0(a
h
− 1)/h = 1 is often discussed in pre-

calculus classes, sometimes using experimentation with a calculating device

to estimate limx→∞(1+ 1/x)x . Thus number is a = e ≈ 2.71828.

Part II: The inverse of ex .

1. Since x ≠ 1, y = ex is monotonic and must have an inverse. The range of

this function is y > 0. Let L(x) be the inverse of ex . The domain of this

function must be x > 0.

2. Let u = f (x) be a non-constant, differentiable function of x. Assuming that

u > 0 we can write u = eL(u) because ex and L(x) are inverses.

3. Taking the derivative of both sides, we have

du

dx
=
d

dx
eL(u)

d

du
L(u)

du

dx

which implies
du

dx
= eL(u)

d

du
L(u)

du

dx
.

The Logarithmic Chicken or the Exponential Egg: Which Comes First? 5



Marshall Ransom, Georgia Southern University

Chuck Garner, Rockdale Magnet School for Science and Technology

Laurel Holmes, University of Alabama

4. Setting equal to 0 and factoring,

du

dx

(

eL(u)
d

du
L(u)− 1

)

= 0.

This implies

(a) du/dx = 0 which is only true at critical points of u since u is not

constant,

(b) or that

eL(u)
d

du
L(u) = 1 so

du

du
L(u) =

1

eL(u)
=

1

u
,

valid for all x in the domain of u because u > 0 in that domain.

5. We have established that
d

du
L(u) =

1

u
.

Part III: L(x) as an integral.

1. Because L(x) and ex are inverses and e0
= 1, we have that L(1) = L(e0) = 0.

2. Because
d

du
L(u) =

1

u
, we must have

∫

1

u
du = L(u)+ C.

3. Therefore

∫ x

1

1

u
du = L(x)− L(1) = L(x)− 0 = L(x).

4. We have established that L(x), the inverse of ex , satisfies L(x) =

∫ x

1

1

u
du.

Part IV: Another way to define e.

1. Because L(x) and ex are inverses, L(e) = L(e1) = 1.

2. Therefore e defined as lim
x→∞

(

1+
1

x

)x

in Part I has the following property:

L(e) =

∫ e

1

1

u
du = 1.

3. L(x) is usually written as ln(x) and is known as the “natural” log with base

e.

Part V: What if y = ax and a ≠ e?

1. We use a precalculus property of logarithms to calculate the log of both

sides of y = ax . We have ln(y) = ln(ax) = x ln(a).

2. We calculate derivatives of both sides of ln(y) = x ln(a). We use the chain

rule and the fact that

d

du
ln(u) =

d

du
L(u) =

1

u

from Part III. This gives us the following result.
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3.
d

dx
ln(y) =

d

dx
x ln(a) implies

1

y

dy

dx
= ln(a) so that

dy

dx
= y ln(a) =

ax ln(a).

4. Therefore
d

dx
ax = ax ln(a). For example,

d

dx
5x = 5x ln(5).

Part VI: The precalculus properties of the logarithm apply to the function ln(x) =

L(x) =
∫x
1

1
t dt, x > 0.

1. We see that
d

dx
L(x) =

d

dx

∫ x

1

1

t
dt =

1

x

due to the Fundamental Theorem of Calculus. We use several times below

this fact and that F ′(x) = G′(x) implies F(x) = G(x)+ C.

2. As a basic property of the definite integral, we have that

ln(1) = L(1) =

∫ 1

1

1

t
dt = 0.

3. We calculate the derivative of both sides of ln(kx) = L(kx) =

∫ kx

1

1

t
dt.

d

dx
L(kx) =

d

dx

∫ kx

1

1

t
dt =

1

kx
k =

1

x
=
d

dx
L(x).

Thus
d

dx
L(kx) =

d

dx
L(x).

So we must have L(kx) = L(x) + C which implies L(k) = L(1) + C. Thus,

C = L(k). Therefore

ln(kx) = L(kx) = ln(x)+ ln(k).

4. We calculate the derivative of both sides of ln(xp) = L(xp) =

∫ xp

1

1

t
dt.

d

dx
L(xp) =

d

dx

∫ xp

1

1

t
dt =

1

xp
pxp−1

= p
1

x
=
d

dx
pL(x).

Since
d

dx
L(xp) =

d

dx
pL(x).

we must have L(xp) = pL(x) + C so that L(1) = pL(1) + C. Then C = 0.

Therefore,

ln(xp) = L(xp) = pL(x) = p ln(x).
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5. We calculate the derivative of both sides of ln

(

x

k

)

= L

(

x

k

)

=

∫ x/k

1

1

t
dt.

d

dx
L

(

x

k

)

=
d

dx

∫ x/k

1

1

t
dt =

1

x/k

1

k
=

1

x
=
d

dx
L(x).

Since
d

dx
L

(

x

k

)

=
d

dx
L(x),

we must have L(x/k) = L(x)+C so that L(1/k) = L(1)+C. Then C = L(1/k).

Using No. 3 and No. 4 above, we have

d

dx
L

(

x

k

)

= L(x)+ L

(

1

k

)

= L(x)+ L(k−1) = L(x)− L(k).

Therefore

ln

(

x

k

)

= L

(

x

k

)

= ln(x)− ln(k).

6. We leave it to the reader to establish the change of base property.

7 Summary

Exponential and logarithmic functions are fundamental in mathematics. Applying

basic calculus to an exponential function of a single, real variable allows us to

connect these two functions without defining the natural log as an integral. All

properties of logarithms follow from this work. The equality

ln(x) =

∫ x

1

1

t
dt

is not to be ignored. It is certainly an important way in which functions can be

defined; and also, it is important to calculating in calculus. We present a manner

in which this can be derived rather than used as a definition.
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