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I started teaching AP Calculus in 2002 at a magnet school for science and technol-

ogy. I was not very good at it, which was a shame, since every student in my school

had to take calculus to graduate, and I was the only calculus teacher. I realize now

why I was not good at it. I taught calculus to my students the way I was taught cal-

culus: heavy on symbolic manipulation and algebra skills; more concerned with

finding antiderivatives than with understanding what the definite integral means;

and only focused on those applications which could be approached in a rote fash-

ion.

I have learned a lot since those first years teaching calculus. By focusing more

on the conceptual rather than the computational, my students understand calcu-

lus better and have greater success on the AP exam. This approach helped my

students, but it also helped me. I have stumbled across some interesting insights

over the years, some developed over time and others gained in flashes of insight.

You may already be familiar with much of what I have learned. But if you still

teach calculus the way you were taught, you may learn something too. So indulge

me as I present to you some of the things I have learned teaching AP Calculus.

The first thing I learned was that we should

Keep the algebra simple.

When I first started teaching AP Calculus, I went absolutely nuts trying to get kids

to understand how to evaluate expressions like

lim
x→1

3x3 + 7x2 − 2x − 8

(x − 1)5
, lim
x→3

√
x + 3−

√
6

x − 3
, and

∫
x4 − 2

x4 − 2x3 + 5x2 − 8x + 4
dx.

So much effort and frustration and time spent on the algebra! Even though most

students recognized what to do, most students struggled to perform the task.

But in studying the types of problems which actually appear on the AP Calculus
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Exam, I realized that no problems like these are tested. My guess as to why prob-

lems such as these do not appear is that students should not be inhibited from

demonstrating knowledge of calculus because of the algebra.

But more than that, I would ask whether they are instructive at all. How can

those three problems above be more instructive to students than

lim
x→2

x2 − 4

x − 2
or

∫
4x2

x2 − 4
dx,

two problems that do not require great amounts of tedious algebra. Besides, is

this tedious algebra really necessary in our modern world? Particularly when

many practicing scientists and engineers would use a computer to calculate any-

thing which may involve such awful algebraic manipulations.

I can’t believe how I made my students work at the beginning of each year. I

covered the typical course sequence: those first two weeks of algebra review, fol-

lowed by weeks of limits, before getting into the good stuff. And we require them

to do crazy algebra to evaluate limits in order to illustrate why they absolutely

had to have those algebra skills down! (As if we are saying “See! Limits are an

application of all those algebra skills! You must know algebra!”) I spent so much

time working with limits and getting kids to evaluate them using algebra tricks.

However, once I examined the types of limit problems that are asked on the AP

exam, I realized that

Limits are a waste of time.

I know this is a controversial statement, but it is true: limits are a waste of time.

Now, I’m not advocating the overthrow of established calculus hegemony. I re-

alize the need for the epsilon-delta formulation as much as the next mathemati-

cian. However, the epsilon-delta form of limits has been long absent from the AP

Calculus course, and the limit problems which remain all seem to fall into four

categories: (1) direct evaluation; (2) left- and right-hand limits for piecewise func-

tions; (3) definitions of continuity and the derivative; and all other limits can be

solved with (4) l’Hôpital’s rule.

The order of these four categories is the order in which I present these con-

cepts about limits. I teach just enough about limits—through direct evaluation,

piecewise functions, and functions whose graphs have holes—for students to un-

derstand the definition of the derivative. The key explanation which allows such

an abbreviated treatment of limits is that I relate “limit” to the simple idea of

“behavior.” Thus, a limit describes a function’s behavior near a point.

For example: What is the behavior of f (x) = (x2 + 2x)/x near x = 0? Since

the function g(x) = x + 2 is exactly equal to f (x) for all x ≠ 2, we may use g to

model the behavior of f . Since the behavior of g near x = 0 is 2, the behavior of

f near x = 0 must also be 2. That is, f is behaving like it will be 2 as x gets closer

to zero. Thus, the limit of f (x) as x → 0 is 2.

After this, I continue with the standard series of lessons on differentiation,

and conclude that with l’Hôpital’s rule so students can handle all other kinds of
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limits, including limits involving infinity. Removing the need for all the ridiculous

algebra has made my life and my students’ lives much better, without sacrificing

understanding. The massive amount of algebraic simplification has been reduced.

This, along with the AP exam standard of not needing to simplify arithmetic, has

lead me to a simple rule:

Don’t simplify.

As AP Calculus teachers, we are already familiar with the fact that fractions need

not be reduced. And even some arithmetic need not be performed. Certainly, how-

ever, some simplification is just never needed. I mean, why should anyone any-

where rationalize any denominator? (Can’t math teachers agree that sin(π/4) =
1/
√

2 is a perfectly good answer already?) Rationalization is nothing more than an

antiquated holdover from the days before calculators. Let me explain: Notice that

it is impossible to use long division to divide 1 by
√

2 = 1.41421356237 . . .. But

when you rationalize, then you can divide
√

2 by 2, to whatever degree of accuracy

you need. But now we have calculators, and we no longer need to rationalize.

Even some algebraic simplification is unwarranted. Consider finding the do-

main of a function. If one simplifies first, then you may miss some values on the

domain. This function appeared on the AP exam about 15 years ago:

f (x) =
√
x4 − 16x2

The first question asked the student to find the domain. If the student simplified it

to x
√
x2 − 16, then the domain is changed. (Not to mention the proper expression

is |x|
√
x2 − 16, but we can’t expect all our students to be miracle workers!) The

domain of the original function includes zero, but the domain of the simplified

form excludes zero. This is a mistake, as the simplified form actually leads to a

wrong answer! The correct domain is, of course, (−∞,−4]∪ {0} ∪ [4,∞).
Don’t think simplifying expressions is never needed. Simplification is needed

for those multiple-choice problems—students must match what they have ob-

tained to the correct answer choice. In addition to algebra, students must be

able to simplify expressions involving trigonometric functions, logarithmic func-

tions, and exponential functions. (Which, by the way, is not strictly considered

simplification. This would fall under evaluating trigonometric, logarithmic, and

exponential functions, which must always be done, when it is possible to do so.)

The logarithmic functions and their associated properties are particularly impor-

tant. Unfortunately, many students, if they remember those “log properties” at

all, do not know why they work or even why they exist. But there is a way to show

them why, and that’s by waiting to introduce them in calculus until integration.

This way, you can
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Define the logarithm as an integral.

What I present to my students—after teaching them the Fundamental Theorem—

is a variation of the following. I define the function L(x) as

L(x) =
∫ x

1

1

t
dt.

I do not tell them that this is the logarithm; instead we (the class and I) will derive

all the properties of the logarithm from this definition. This way, the properties

have a reason for existing.

Notice that L(x) cannot be defined for zero or negative values, because of

the vertical asymptote of the function f (t) = 1/t. This function L is defined

in this way because its derivative needs to be 1/x, which it is, according to the

Fundamental Theorem:

L′(x) = d

dx

∫ x

1

1

t
dt = 1

x
.

Hence, L(x) is the antiderivative of
1
x . Now we investigate properties of L. First,

the class sees that

L(1) =
∫ 1

1

1

t
dt = 0.

Clearly, if x > 1 then L(x) is positive since we are calculating area under a curve.

Also, if 0 < x < 1, then, since the integral accumulates area in the opposite

direction, L(x) must be negative.

Is L the only function for which 1/x is its derivative? We answer this by finding

the derivative of L(kx) for constant k. By the chain rule,

L′(kx) = d

dx

∫ kx

1

1

t
dt = 1

kx
· k = 1

x

so that L(kx) is also an antiderivative of 1/x. Hence, since two antiderivatives

can at most differ by a constant, L(kx) = L(x)+C. We may find the value of C by

letting x = 1, where this becomes L(k) = L(1) + C. But L(1) = 0, which implies

L(k) = C. Therefore,

L(kx) = L(x)+ L(k).
I believe this is the development of the “log property” log(ab) = loga+ logb that

makes the most sense to students at this level.

Then the class differentiates L(xp) for real p:

L′(xp) = 1

xp
· pxp−1 = p · 1

x
= pL′(x).

So then p(1/x) is the antiderivative of the two functions L(xp) and p · L(x).
Hence, these functions must differ by a constant; this gives L(xp) = pL(x) + C.

Letting x = 1 results in C = 0. Therefore, in general,

L(xp) = pL(x).
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At this point, I finally define the function L(x) as the logarithm function for

my students, and point out that there must be some value of x which results in

L(x) = 1. I simply say that whatever value that is we will call e.

Then we investigate functions of the form f (x) = cL(x) for some nonzero

constant c. All properties so far discovered must be satisfied; in particular, we

want cL(x) = 1 for a particular value of x. Call this particular value b. Then b

cannot be equal to 1 (since L(1) = 0), and so we have cL(b) = 1. Rewriting, we

get c = 1/L(b), so that f (x) = L(x)/L(b). This implies that all functions which

are multiples of L(x) are simply L(x) scaled by a particular value of L. Note that

when this value is e, we have

L(x)

L(b)
= L(x)

L(e)
= L(x)

1
= L(x),

which is the reason we term this “non-scaled” function the natural logarithm.

Writing the natural logarithm of x as loge x (to denote that the constant scale

factor is L(e)), motivates us to define the other scaled functions of L(x) as loga-

rithms to the base b, denoted logb x, where b is any number greater than 1. Hence,

with this new notation,
L(x)

L(b)
= logb x.

However, L(x) alone can be written loge x and similarly L(b) may be written as

loge b. Thus,

logb x =
L(x)

L(b)
= loge x

loge b
,

and the change-of-base formula is established. And, of course loge x is denoted

lnx.

With this established it is then an easy matter to discuss the properties of the

inverse of the function L(x), which I oh-so-cleverly call E(x). Naturally, I lead the

students to the fact that the inverse is the exponential function. But before we

get there, I exploit the fact that E(x) is the inverse of L(x) in order to find the

derivative of E(x).

I begin by composing ln(x) with E(x) in two ways. The first way is ln(E(x)) =
x. Recalling that ln(x) =

∫x
1

1
t dt, we also have that

ln(E(x)) =
∫ E(x)

1

1

t
dt.

Therefore, ∫ E(x)

1

1

t
dt = x.

Taking derivatives of both sides, we get

1

E(x)
· E′(x) = 1, or E′(x) = E(x).
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This is the simplest way of actually proving that the derivative of the exponen-

tial function is itself. Only the development of the logarithm as an integral allows

this. When we introduce exponentials and logarithms early in the AP Calculus

course, we lose this mind-blowing result—instead, it becomes something only ac-

cessible through calculator tricks and numerical data. Which is a fine method if

no other method is available; but there is, I think, a better method in this case.

Of course when it comes to exponentials, the traditional method of writing

the inverse of the logarithm is by denoting it ex . This is a fine notation—as far

as it goes. However, when introduced using this notation, it becomes too easily

confused in the minds of students with a power function. I know we have all seen

the following ridiculous work in our students:

d

dx

(
ex

2
)
= x2ex

2−1. (This is wrong!)

How can we get our students to stop making this silly mistake? By never using

this notation until later in the course. Instead

Use the notation exp(x) for the exponential function.

When students are asked to differentiate f (x) = cos
(
x2
)
, g(x) = ln

(
x2
)

and

h(x) = sin
(
x2
)
, the students do not use the power rule by mistake! They of

course use the chain rule: f ′(x) = −2x sin
(
x2
)
, g′(x) = 2x(1/x2) = 2/x, and

h′(x) = 2x cos
(
x2
)
. So why not use a notation for the exponential function which

reinforces the fact that it is a function like these others? With this notation, a

student will correctly obtain

d

dx

(
exp

(
x2
))
= 2x exp

(
x2
)
.

Like the logarithm function, the trigonometric functions, and the inverse trigono-

metric functions, we should use a notation that screams “function!”

What about the other exponential functions like 2x and 3x and the like? Well,

since each of these can be expressed in terms of the function exp(x), like so—

2x =
(
eln 2

)x
= ex ln 2 = exp (x ln 2)

—one can avoid using any other exponential function but exp(x), just as one can

avoid using any other logarithm function but lnx.

Speaking of avoiding troublesome notations and functions, I have a bone to

pick with the notation for inverse trigonometric functions. I can’t stand it. That’s

why I

Use the “arc” notation for inverse trig functions.

I cannot count how many times students see sin−1 x and think “cscx.” It is in-

grained in their little heads that an exponent of negative one must mean recipro-

cal. I have tried to unteach that fact, but unteaching is really hard to do! So I have
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resorted to using “arcsinx” for the inverse sine to avoid any confusion with the

cosecant.

I much prefer this notation for another reason as well: this notation indicates

what this function does. We know that we need an angle input for the sine func-

tion; that is obvious. But what do get out? When we write sin(π/6) = 1/2, what

exactly does that 1/2 represent? It represents a length. Indeed, given a circle of

radius 1, sinθ = k says that the length of the chord determined by the angle 2θ
is 2k. In ancient times, the value of the length of the chord was used to denote

the length of the arc subtended by the chord. That is, by constructing a chord of

length 2k, one then determines an arc, so the length of the chord became associ-

ated with the length of the arc. Therefore, the sine function takes an angle and

from that one may determine the length of an arc. It makes sense that the inverse

sine function should take a length of an arc and return the associated angle; hence

“arcsine.” I tell my students simply that sin(angle) = length and arcsin(length) =
angle.

So not only does this notation resolve the confusion between sin−1 x and cscx,

this resolves most of the domain and range issues students have with these func-

tions as well.

Those domain and range issues are tricky, but getting a handle on them is

important! Most students ignore domain issues, particularly when a function is

defined on an interval. This is especially important when finding extrema, which

is why I

Use the “closed interval extrema test.”

I teach the two classic tests for extrema: the first derivative test and the second

derivative test. (The second derivative test is a test for extrema, not inflection

points—there is an “inflection point test” for that.) Most AP Calculus teachers

are good with teaching their students these tests. Most are also good with sim-

ply evaluating the function at the critical points and at the endpoints when the

function is defined on a closed interval. But the students do not so a good job

of catching the closed interval problems. By teaching this as a separate test, stu-

dents are keyed into noticing whether the function is defined for an interval or

not.

I teach many things not mentioned in the AP Calculus AB course description,

such as l’Hôpital’s rule. I am careful about the “extra” stuff I teach. I feel anything

extra must make sense to the students and there must be a reason for its inclu-

sion. I also teach things not mentioned in the AP Calculus BC course description.

In fact, I

Teach the root test for convergence.

The root test for infinite series says the following.
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Theorem 1 (Root Test). For the series
∑∞
n=1an, define

r = lim
n→∞

n
√
|an|.

If r < 1, then
∑
an converges absolutely; if r > 1, then

∑
an diverges.

Any series which can be shown to converge by the ratio test also can be shown

to converge by the root test. (In fact, both the ratio and root tests have the same

conclusion.) As long as one establishes that limn→∞
n
√
n! = ∞,1 then the root test

is, in my opinion, easier to use than the ratio test. For example, most of us would

use the ratio test to solve the following problem.

Problem 1. Determine the convergence or divergence of the series

∞∑

n=0

(n+ 1)n

n!nn
.

The ratio test certainly works, but the root test determines the convergence

more quickly:

lim
n→∞

n

√∣∣∣∣
(n+ 1)n

n!nn

∣∣∣∣ = lim
n→∞

n+ 1

n
n
√
n!
= 0

so that the series converges absolutely. The root test is easy to apply since it

requires less algebraic manipulation than the ratio test. (I still teach the ratio test

since there have been AP Exam problems which specifically ask the students to

use the ratio test.) Reducing algebraic manipulation is important for most of our

students, since the algebra skills they do have are generally very weak. That is the

motivation for why I

Use partial derivatives for implicit differentiation.

When confronted with an implicitly-defined curve, we AP Calculus teachers gen-

erally teach students to interpret each y as nothing more than representing an

implicit function y = f (x) so that the chain rule must be used on each y term.

For instance, to find dy/dx for the curve y2 + x3y3 + x2 − 8 = 0 we find

2yy ′ + 3x2y3 + 3x3y2y ′ + 2x = 0. Solving for y ′ we obtain

y ′ = −3x2y3 − 2x

3x3y2 + 2y
.

The difficulty is that students forget to use the chain rule when differentiating

y . This becomes more burdensome if the equation of the curve has many terms

involving products or quotients of x and y . However, if we view the curve as

1This can be seen to diverge by splitting the expression up:
n√

1 · n√
2 · n√

3 · · · n
√
n. Each term

converges to 1 from above, so this product consists of numbers each larger than 1, except for
n√

1 = 1. Thus the product continues to grow as n→ ∞.
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defining a surface in space, then we may use partial derivatives to easily obtain

dy/dx.

Suppose F(x,y) = 0 where F is a function of the two independent variables x

and y . Then the total differential of this function is

∂F

∂x
dx + ∂F

∂y
dy = 0.

(See [2].) Solving this differential for the ratio dy/dx gives

dy

dx
= − ∂F/∂x

∂F/∂y
.

Let’s use this technique on the implicit function F(x,y) = y2+x3y3+x2−8.

We have
dy

dx
= − ∂F/∂x

∂F/∂y
= −3x2y3 + 2x

2y + 3x3y2
,

which is the same derivative we found before, but with much less trouble (and no

chain rule errors)!

I think it is interesting that a change in notation, or a change in method, or a

change in definitions, can lead to deeper understanding and easier execution. I

personally had such an epiphany about eight years ago when I realized that

Euler’s method is just tangent lines.

While my class was reviewing for the AP Exam, I happened to have done on the

board a problem about tangent lines and another problem on Euler’s method. I

saw my Euler’s method equation

yk+1 =
dy

dx

∣∣∣∣
(xk,yk)

∆x +yk

and I rewrote it:
dy

dx

∣∣∣∣
(xk,yk)

∆x = yk+1 −yk.

I teach my students to write tangent lines in point-slope form:

m(x − x1) = y −y1

and I noticed that Euler’s method is just tangent lines. The slope at a point is

clearly m = dy/dx
∣∣
(xk,yk)

and the change in x, ∆x, is x − x1. This completely

changed how I teach Euler’s method. I teach this as nothing more that an appli-

cation of tangent lines instead of as a strict numerical procedure. This approach

eliminates one more equation for a student to memorize.

Note that Euler’s method is itself an approximation for the value of a function.

This is also the use of a tangent line: it too is an approximation. Tangent lines are

very useful approximators. In fact,

Things I Learned Teaching AP Calculus 9



Chuck Garner, Ph.D. Rockdale Magnet School for Science and Technology

Taylor polynomials are just an extension of the tangent line idea.

I introduce the concept of “approximating polynomials” early in the course. Once

tangent lines are used to approximate functions, it is natural to ask how to get a

better approximation. One answer is to add a quadratic term. This would match

the concavity of the function. So we should use something like the following, to

approximate f (x) centered at x = a:

P2(x) = A+ B(x − a)+ C(x − a)2.

How do we know what the coefficients A, B, and C are? Well, certainly the values

of f and P1 must be the same at x = a. Therefore, we need f (a) = P2(a) = A.

Also, we want P2 and f to be tangent; thus, we need f ′(a) = P ′2(a). Computing

P ′2(x) we get P ′2(x) = B + 2C(x − a) so that P ′2(a) = B = f ′(a). This means that

so far we have

P2(x) = f (a)+ f ′(a)(x − a)+ C(x − a)2

and all that remains is to determine C.

We added the quadratic term so the approximating polynomial matches the

concavity; so we need the concavity of P2(x) to match that of f (x) at x = a. This

implies that we need f ′′(a) = P ′′2 (a). Thus P ′′2 (x) = 2C so then P ′′2 (a) = 2C =
f ′′(a); this implies C = f ′′(a)/2.

At this point, I define the “quadratic approximating polynomial” for f at x = a
to be

P2(x) = f (a)+ f ′(a)(x − a)+
1

2
f ′′(a)(x − a)2

where a is the center.

And of course, it is natural to ask about a cubic approximation. In fact, we

can determine such an approximation using previous methods. Here, we want to

determine coefficients A, B, C, and D such that

P3(x) = A+ B(x − a)+ C(x − a)2 +D(x − a)3

where, again, x = a is the center. We will end up going through the same proce-

dure as with the quadratic approximation to obtain A, B, and C. Thus, we know

A = f (a), B = f ′(a), and C = f ′′(a)/2. It only remains to determineD. Following

the pattern established, it makes sense that we need the third derivatives of f and

P3 to be equal at x = a. Computing, we have

P ′3(x) = B + 2C(x − a)+ 3D(x − a)2

P ′′3 (x) = 2C + 6D(x − a)
P ′′′3 (x) = 6D

so then P ′′′3 (a) = f ′′′(a) = 6D, or D = f ′′′(a)/6. And, we have a definition of a

“cubic approximating polynomial” of a function f at x = a as

P3(x) = f (a)+ f ′(a)(x − a)+
1

2
f ′′(a)(x − a)2 + 1

6
f ′′′(a)(x − a)3
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where a is the center.

Discussions of convergence or divergence are held until Taylor series and Tay-

lor polynomials are introduced later. However, this approach sets up the idea of

Taylor series and Taylor polynomials. The students already understand the use of

Taylor polynomials as approximators and can use them as such. The general form

of a Taylor polynomial also makes sense, as students have seen and understood

why it has that form. Many modern calculus books do not use this approach,

although some old ones do. And a few old books use this idea very early in the

course. This leads to one thing I would encourage every calculus teacher to do:

Read old calculus textbooks.

Older calculus textbooks contain gems not contained in new textbooks. (Why is

that? Do mathematical terms fall out of favor? Are certain symbols and nota-

tions just a passing fad? Are modern textbooks too concerned with providing

support for technology to actually explain things well? I wish I knew.) The nota-

tion “exp(x)” for the exponential function I found in an old calculus book (see [1]

for example). Older calculus books were very concerned with curve-sketching—

makes sense that they would be in the era before graphing calculators. However,

notice that today in our calculus classes we do not spend any time at all sketch-

ing implicitly defined curves, even though our graphing calculators cannot graph

them. So it would seem to me that knowing how to sketch implicitly-defined

curves would continue to be useful to our students. Older calculus textbooks are

filled with such ideas, while newer ones are not. I agree that technology should

be used to graph these kinds of curves, but by disregarding all aspects of im-

plicit curve-sketching, we lose some pertinent ideas for AP calculus. Allow me to

describe one example of such a thing. Consider the following.

Problem 2. Find all points on the curve y4 − 5y2 = x4 − 4x2 at which the tangent

lines are (a) vertical; (b) horizontal.

Most of us would (quite rightly) find the derivative first. Let’s use partial deriva-

tives to find dy/dx. We write F(x,y) = y4 − 5y2 − x4 + 4x2 = 0 and compute

dy

dx
= − ∂F/∂x

∂F/∂y
= −−4x3 + 8x

4y3 − 10y
= 2x3 − 4x

2y3 − 5y
.

Then by the standard procedure we arrive at the points for which there are ver-

tical tangents: (±2,0) and (0,0); and for which there are horizontal tangents:

(0,±
√

5/2) and (0,0). However, in checking these points, we notice that the point

(0,0) actually makes the derivative take on the indeterminate form 0/0. So how

do we know that the tangents at the origin are really vertical (or horizontal)?

At this point, a newer textbook by a pair of eminent mathematicians instructs

the students to use a calculator or computer. Using the calculator to find points on

the curve close to the origin, they suggest calculating the average rate of change

as an approximation to the slope of the tangent line. However, the old text by Love
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and Rainville [3] instructs students differently. That text includes the following

definitions:

Definition. A singular point is a point on a curve at which the derivative becomes

0/0. This indicates the presence of a double point—a point through which the

curve passes twice. The tangent lines of the curve at a double point are found by

considering only those terms of degree two in the equation and solving.

Since the terms of degree two are −5y2 and 4x2, we ignore the other terms

and solve −5y2 + 4x2 = 0 to get y = ±2x/
√

5; these are the tangent lines at

the origin (which, by the way, proves that the tangents at the origin are neither

vertical nor horizontal). This is a very nice idea!2 As to why this works, I will refer

you to [3].

Another old textbook demonstrates how to apply the multivariable calculus

method of optimization by Lagrange multipliers to our standard single-variable

optimization problems (see [4]). The result is that a complex optimization prob-

lem turns into a simple of system of equations. These old textbooks are unique for

other reasons, too. One of them being that there aren’t too many problems. There

seem to be just the right mix of routine and challenging problems for students to

try—unlike modern textbooks. Which brings me to the last thing I learned:

Modern calculus textbooks have too many problems.

Open up any of the current favorite calculus textbooks and you will see something

that should shock you: every section of every chapter has 70-100 problems. But

my guess is that this doesn’t shock you. This is probably something you are used

to seeing in all calculus textbooks. But consider this: Is it possible for one student

to do them all in a semester or two? Is it possible that any teacher, professor, or

teaching assistant would grade them all even if a student did them? I do not think

so. And the publishers of the textbooks don’t think so either, or they wouldn’t

produce “teacher’s guides” which suggest that students do “every third problem.”

If the publishers themselves produce guide books suggesting students are only to

do every third problem, then why not eliminate two-thirds of the problems and

cut the book down by 200 pages?

And this makes us lazy teachers. If the guidebook says to only assign every

third problem, then that’s what we do, isn’t it? It’s funny how we trust those

guidebooks. Did we read every third problem to see if it was appropriate to gauge

our students’ understanding of what we taught them? Did we do every third

problem in order to anticipate the struggles our students may face? More often

than not, the answer is no—we simply make the students struggle with problems

that may not have been appropriate and then wonder why they give up on doing

homework as the semester drags on.

2This method only works if the double point is located at the origin. If the double point is located
somewhere else, then one must translate the curve so that the double point lies on the origin. For
instance, if the double point of the implicit curve f(x,y) = 0 is (2,3), then the curve must be
translated to the left 2 units and down 3 units, creating the curve f(x + 2, y + 3) = 0.
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Of course, the reason books have so many problems is that the publishers

feel that to make a profit the book must be marketable to as many high schools,

colleges, and universities as possible. So the publishers hire “assistants,” “accu-

racy checkers,” “art program designers,” and myriad others to “help” the author

write the book, develop problems, write solution manuals, and produce guide-

books which advocate doing every third problem. The textbook becomes a book

written by committee instead of expressing the educational and mathematical vi-

sion of the author, and so the book becomes like all other textbooks: a 1200-page

calculus doorstop. Why do we continue to purchase such nonsense?
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