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Preface

The mathematics in this book is not hard, but neither is it very interesting, unless you are an algebra nerd.

— Review in The Economist of Lewis Carroll in Numberland by Robin Wilson

Why should a student learn discrete mathematics? For me, there
are two good reasons. One is that discrete mathematics is used in
almost all areas of computer science, data science, actuarial science,
logistics, and many other disciplines. So a student learning discrete
mathematics has a good foundation from which they can excel in
those other disciplines. But that, in my opinion, is the less important
of the two reasons.

The second reason is the exposure to the wide array and variety of
mathematical topics and structures outside the traditional algebra,
geometry, trigonometry, and calculus sequence. Many students feel
frustrated with factoring, confused by calculus, lost with logarithms,
and triggered by trigonometry. Due to the vast amounts of symbolic
manipulation and solution finding, some students come away from
those traditional courses with the view that mathematics is all about
computing an answer. Discrete mathematics shows these students
that mathematics is no more about computation than literature is
about grammar. Certainly, computations are important and useful,
but calculations are not mathematics — just as knowing grammar is
important, but grammar is not literature. With discrete mathematics,
students finally get a chance to experience other important and fasci-
nating areas of mathematics outside the traditional course sequence,
and hopefully come away with an understanding that mathematics is
more than just computation: it is about proof.

The topics included in this book reflect the growing importance
of certain areas of mathematics, and my own personal favoritism to-
wards some topics. The scope of the book is narrow on purpose.
The choices of topics and applications are chosen with the student
in mind to be relevant, interesting, and reflective of the mathematics
they are learning. It would be easy to expand these topics further,
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but then I would have written a number theory textbook, or a graph
theory textbook, or a combinatorics textbook, rather than an intro-
duction to these topics. Your favorite topic or application may not
be included, but by keeping the book slim, you have ample time to
include it in your classes.

At my institution, students taking a course in discrete mathemat-
ics have already completed a course in differential calculus. They
are taking discrete mathematics instead of more calculus because
their intended major and careers do not require more calculus, or
because they did not find calculus enjoyable (but want to know more
mathematics), or because some are required to take discrete math-
ematics. As a result, this book is written with two broad types of
student in mind: the student who has some mathematical sophisti-
cation, and the student who has struggled with the traditional math-
ematical course sequence. Thus, the textbook is intended to be read
by students of varying backgrounds, and I wrote it with this goal in
mind.

The variety of reasons for a student to take this course also re-
sults in a variety of difficulty levels in the problem sets. Most prob-
lems simply reinforce the concepts learned, and are straightforward
– some are even (gasp!) rote. However, some problems require plenty
of thought to put the pieces of mathematics and logic together to
form a solution. There are supplemental problems at the end of each
chapter, grouped by section. These are intended to give extra prac-
tice of concepts. I use problem and example titles to help students
find similar problems in the supplemental problems to those in the
problem sets at the end of each section, and to enable students to
refer to examples more easily. There are also sample test questions
at the end of each chapter which are not titled or grouped by sec-
tion, thereby preparing students for how they would see problems
presented on a test.

There are no answers in the back of the book. I went back and
forth about including the answers in the back of the book. Some
students use the answers as they should be used: a check on their
progress. Most students, unfortunately, simply flip to the back of
the book at the first hint of struggle with a problem, thereby never
letting themselves think deeply and think through a problem. I con-
sidered putting all answers in the back except the proofs, but even
a numerical answer in the back can short-circuit the problem-solving
process. While the answers in the back could prove useful, I ulti-
mately decided not to put them in the back of the book. A separate
solutions manual is available from lulu.com.
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1
LOGIC and SETS

The title of this book is Discrete Mathematics: A Gateway to the
Mathematical Garden. What does this mean? Discrete math-

ematics is the mathematics of concepts which are not continuous;
concepts such as counting objects, properties of integers, logic, and
proof. Some use this interchangably with the term finite mathemat-
ics. However, finite mathematics is about concepts which are not
infinite. There are many interesting concepts of mathematics which
can be classified as finite or discrete or both. The overwhelming ma-
jority of your mathematical education has focused on the continuous
and infinite (indeed, this is what calculus is all about) while neglect-
ing these other concepts. This book aims to address this imbalance.

This first chapter sets the stage for the rest of the course. There
will be many new terms and ideas thrown at you very quickly. Just
like any garden, you will need to get your hands dirty for things to
bloom! Thus, it is best to have a pencil and your notebook with you
to make note of the new terms and their definitions. You can easily
spot the new terms because they are italicized and typeset in red, like
this. You should read each section before you come to class, and you

A few of the new terms will
appear in margin notes
like this one, and some will
appear in the problems.

should have thought about the examples and their solutions.
Time to get started! Do you have your pencil and notebook? Are

you sitting comfortably? Discrete mathematics awaits!
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1.1 Statements

When dealing with people, remember you are not dealing with creatures of logic,
but with creatures bristling with prejudice and motivated by pride and vanity.

— Dale Carnegie, How to Win Friends and Influence People

A statement is a declarative sentence that is either true or false,You will learn . . .
1: to determine whether a

sentence is a statement;
2: to write statements from

symbols to English and
vice versa;

3: to represent the oper-
ations and, or, and not
using logical symbolism,
and to determine whether
statements involving
these operations are true
or false;

4: to interpret if-then state-
ments.

but not both. The adjective “declarative” rules out sentences such
as commands or questions. Every statement has a truth value, either
true (T ) or false (F ). If the truth value is ambiguous—perhaps the
sentence expresses an opinion or contains ill-defined terms—then
the sentence is not a statement.

� Example 1.1.A – Some Statements.

Which of the following sentences are statements? Determine the truth
values of the ones that are statements.

(a) Mars is a planet.

(b) 6 > 1.

(c) Lizzo is better than Taylor Swift.

(d) Buy tickets to the BTS concert.

(e) x < 10.

(f) x2 = 9.

(g) (x +y)2 = x2 + 2xy +y2.

(h) Who is calling me?

(i) 1 + 1 = 3.

(j) Alexis has the highest SAT score in her school.

(k) Calculus is difficult.

(l) Her name is Cecily Strong.

(m) All of Halsey’s email is spam.

(n) Our country is worse because of woke commie liberals.

(o) Our society is worse because of fascist right-wing nutjobs.

� Solution. Sentences (c), (k), (n), and (o) express opinions, and are
therefore not statements. Sentence (d) is a command, and therefore not
a statement. Sentence (h) is a question, and therefore not a statement.
Sentences (e), (f), and (l) are ambiguous, and so are not statements be-
cause we do not know the value of the variables (“x” in the cases of (e)
and (f), and “her” in (l)).

This leaves (a), (b), (g), (i), (j), and (m) as statements. Statements
(a), (b), and (g) are true. Statement (i) is false. Statements (j) and (m)
are certainly either true or false, and not both; however, we need more
information to determine which!

The statements in Example 1.1.A are simple statements because
Some logicians and math-
ematicians use the term
proposition instead of
“statement.”

they can be represented by a single letter, such as p or q. For in-
stance, we can write p = “Mars is a planet.” Some propositions
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are combined using logical operators to create compound statements.
The words “not,” “and,” and “or” are three such logical operators.

The “or” in everyday
English is not the same
as the logical or. Often in
conversation, we do not
allow both possibilities
to be true. For instance,
“Coke or Pepsi” is a choice
between two options, not
a logical statement. (And
the right choice is neither
Coke nor Pepsi, it’s RC.
Fight me.) The choice
between two options—p or
q but not both—is called
the exclusive or, while the
logical or used here is the
inclusive or.

� Example 1.1.B – A Compound Statement.

Both “Mars is a planet” and “Pluto is a planet” are statements. A com-
pound statement would be “Mars is a planet or Pluto is a planet.” An-
other compound statement is “Pluto is not a planet.”

We use symbols for these logical operators when the statements
are represented by single letters. Let p = “Mars is a planet” and
q = “Pluto is a planet.” Then we can make the following compound
statements.

The symbol p∧q represents “Mars is a planet and Pluto is a
planet.” The statement p∧q is true only when p is true and q is
true. If one of them or both are false, then p∧q is false.

The symbol p∨q represents “Mars is a planet or Pluto is a planet.”
The statement p∨q is true when at least one of p or q is true. If both
are false, then p∨q is false.

The symbol ¬q represents “It is not the case that Pluto is a planet”
or simply “Pluto is not a planet.” The statement ¬q is true when q is
false; ¬q is false when q is true. We say that ¬q is the negation of q.

The symbols ∼ q, q′, and
q are also used to denote
“not q.” Some computer
languages use !q for “not
q.”

� Example 1.1.C – Truth Value of a Compound Statement.

Let p = “Mars is a planet” and q = “Pluto is a planet.” Then p∧¬q
represents “Mars is a planet and Pluto is not a planet.” It is true that
Mars is a planet. It is false that Pluto is a planet, so it is true that Pluto
is not a planet. So we have two true statements joined together with an
“and.” Thus the statement p∧¬q has a truth value of T .

We can summarize the truth value of the compounding connec-
tors in a truth table. The truth table lists every possible combination
of T and F that p and q could have, and the corresponding values of
the compound statement. Below are the truth tables for “not,” “and,”
and “or.”

p ¬p p q p∧q p q p∨q
T F T T T T T T
F T T F F T F T

F T F F T T
F F F F F F

� Example 1.1.D – Translating Symbols.

Let p, q, and r represent the following statements.

p = “It is raining.” q = “Dale is at the mall.” r = “It is sunny.”

Translate the following symbolic statement into proper English. As-
suming that p, q, and r have the truth value T , determine the truth
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values of each symbolic statement.

(a) p∨ r
(b) q∧¬ r

(c) ¬(p∧q)
(d) q∧(p∨¬ r)

� Solution.

(a) “It is raining or it is sunny.” Since both p and r are true, then
p∨ r is true.

(b) “Dale is at the mall and it is not sunny” or “Dale is at the mall but
it is not sunny.” Given that r is true, then ¬ r is false. As long as
one of the two is false, the entire and-statement is false.

(c) “It is not the case that it is raining and Dale is at the mall.” Since
p and q are true, then p∧q is true. This makes ¬(p∧q) false.

(d) “Dale is at the mall and it is raining or it is not sunny.” Given
that r is true, then ¬ r is false. But since p is true, p∨¬ r is still
true. Since this is true and q is true, the statement q∧(p∨¬ r)
has truth value T . However, notice the ambiguity here in the En-
glish translation. We could translate (q∧p)∨¬ r as “Dale is at
the mall and it is raining or it is not sunny.” The same English
sentence can mean two different logical statements!

In everyday English, “but”
suggests that the phrase
following “but” is unex-
pected. However, logically,
“but” and “and” are equiv-
alent.

Compound statements using the operators ∧, ∨, and ¬ are not

Is it any wonder peo-
ple misunderstand each
other?

the only ones. There are also compound statements of the form “if
p then q” and “p if and only if q.” The statement “if p then q” is an
implication, or a conditional statement. It is symbolized as p ⇒ q. In
the statement p ⇒ q, we call p the hypothesis and q the conclusion.
As such, p ⇒ q is often read as “p implies q,” but it could also be
translated as

• “p only if q,”
However, “p if q” is equiva-
lent to “If q then p” which
is different from “p only if
q”!

• “p is sufficient for q,”

• “q is necessary for p,” or

• “q whenever p.”

The statement “p if and only if q” is a double implication, or a bi-
conditional. It is symbolized as p � q, and the English “if and only
if” can be abbreviated to iff. The symbol p � q is itself an abbrevia-
tion of what the statement actually means: (p ⇒ q)∧(q ⇒ p). That
is, p iff q means that p implies q and q implies p.

The truth tables for these statements are below.

p q p ⇒ q p q p � q

T T T T T T
T F F T F F
F T T F T F
F F T F F T

Let’s examine an implication to see why there is only one instance
when p ⇒ q could be false. Consider the following compound state-
ment, where p = “I am late for my job” and q = “I will be fired”:
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“If I am late for my job, then I will be fired.”

Now, suppose that you are late for your job, and your boss fires
you. In this case p and q are both true, so we see that p ⇒ q must
also be true. That is, your boss followed through on their promise to
fire you if you are late.

Now suppose that you are late but your boss doesn’t fire you. In
this case, p is true and q is false. In other words, the boss did not
keep their word. So it is no longer true that p implies q since you
weren’t fired. Hence, p ⇒ q is false.

In the third case, suppose you are not late and then your boss
fires you. In this case p is false and q is true. You may think that
p ⇒ q must be false, but wait: your boss did not say under what
other conditions you could be fired. Perhaps you stole money from
the register, or you didn’t lock the door when you left yesterday after
closing, or the boss just doesn’t like your attitude. In other words,
the boss did not say that if you showed up on time that you would
keep your job! In this case, p ⇒ q is vacuously true, that is, true by
default, since we do not know what would happen if you showed up
on time.

In the fourth case, suppose you are not late and your boss doesn’t
The take-away here is that
a conditional statement
is false only when the
hypothesis is true and the
conclusion is false!

fire you. Here, both p and q are false. But again, we do not know what
would happen if you showed up on time. Thus, like the case before,
this is vacuously true.

Problems for §1.1

1 A Few Statements. For each of the following,
determine whether the sentence is a statement.
Determine the truth values of the ones that are
statements.

(a) Video games are fun.

(b) The difference between two even integers
is an even integer.

(c) There was a time in your life where your
age in months was equal to your height in
inches.

(d) Why are you calling me?

(e) Please do not call me.

(f) Hulu is better than Netflix.

(g) There are infinitely many prime numbers.

(h) The equation x2 = 9 has two solutions.

(i) In a room full of 400 people, at least two
people in the room share a birthday.

(j) Tom Holland is the best Spider-Man.

2 Truth Values. Determine all truth values for
each statement for every possible combination
of truth values of p and q. You may find it

useful to create a truth table.

(a) p∧(¬p)
(b) (¬p)∨q

(c) ¬(p∧q)
(d) p∧(¬q)

3 Negations. Write the negations of the following
statements.

(a) The equation x2 = 9 has two solutions.

(b) A square is a rhombus.

(c) There are infinitely many prime numbers.

(d) Exponential functions are always positive.

4 Translations to English. Suppose p = “It is cold
outside,” q = “It is snowing,” and r = “Kala is
swimming.” Write the English translations of
the following symbolic statements, and, given
that p, q, and r are true, determine the truth
value of each statement.

(a) (p∧q)∧r
(b) (p∧ r)∧¬q
(c) p ⇒ r

(d) (p∧q) ⇒ r
(e) r ⇒ (p∨q)
(f) q ⇒ ¬ r

5 Translations to Symbols. Suppose p = “n is di-
visible by 2,” q = “n is divisible by 9,” and r =
“n is divisible by 18.” Translate the following
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English statements to symbols and determine
their truth value for all integers n.

(a) If n is divisible by 18, then n is divisible by
9.

(b) If n is divisible by 2 and by 9, then n is
divisible by 18.

(c) n is divisible by 18 if and only if n is divis-
ible by 2 and by 9.

(d) That n is divisible by 2 is sufficient for n
to be divisible by 18.

6 Implications. Which of the following are other
ways to express the statement “If I am late for
my job, then I will be fired”?

(a) Being late for my job is sufficient for being
fired.

(b) Being late for my job is necessary for being
fired.

(c) I will be fired only if I am late for my job.

(d) I will be fired whenever I am late for my
job.

(e) I will be fired if I am late for my job.

(f) Being late for my job implies that I will be
fired.

7 Early Voting. To cast a ballot in Rockdale
County, Georgia before election day, certain
requirements must be met: you can only vote
early on any non-holiday between 3 and 17
days prior to election day; you must be a legal
resident of Rockdale County; you must be at
least 18 years old; and you must have a valid
form of identification. Let p = “You are al-
lowed to vote early,” q = “It must be between
3 and 17 days prior to election day,” r = “It is
a holiday,” s = “You are a legal resident,” t =
“You are at least 18 years old,” and u = “You
have a valid ID.” Construct a symbolic state-
ment using q, r , s, t, and u that is equivalent
to p.

1.2 Compound Statements

On its own, being a decent person is no guarantee that you will act well,
which brings us back to the one protection we have against demagogues, tricksters,

and the madness of crowds: clear and reasoned thinking.

— Christopher Paolini, Eldest

Assessing the truth value of a statement can be complicated, butYou will learn . . .
1: to construct truth tables

that represent conditional
statements, and use
truth tables to determine
whether a statement is
true or false;

2: to translate conditional
statements from logical
symbolism to English and
vice versa.

that is mostly because the words we use in logic and mathematics
have different meanings in everyday conversations. We have already
mentioned the difference between the inclusive or and the exclusive
or. Another reason is the lack of rigor in what we say and mean.
Consider the following statement made by a parent to a child.

If you want dessert, then you will eat your vegetables!

Now suppose that the child eats their vegetables but doesn’t get any
dessert. Did the parent lie? No! The parent said what would happen
if the child wanted dessert. The parent never indicated what would
happen if the child ate the vegetables! The child (and possibly the
parent) assumed the converse of the statement to be true when it
does not necessarily have to be.

Due to our misuse of logic and language, we learn, from an early
age, misguided reasoning. One way to combat this is to rely on the
symbols and the truth tables to determine when a statement is true
or false. This becomes quite crucial with more complicated com-
pound statements.
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� Example 1.2.A – Compound Statements.

Are the following statements true or false?

(a) Abraham Lincoln was President of the United States in 2021 or
3 + 4 = 7.

(b) If the sky is purple, then New York City is a big city.

(c) If Google makes the iPhone, then buses can fly.

(d) If the capital of Georgia is Atlanta, then an equilateral triangle has
equal side lengths.

� Solution.

(a) It is not true that Abraham Lincoln was President of the United
States in 2021, and it is true that 3+4 = 7. Hence, this statement
has the form p∨q, where p is false and q is true. This means
that the statement p∨q is true since q is true.

(b) It is not true that the sky is purple, and it is true that New York
City is a big city. Thus we have an implication of the form p ⇒ q,
where p is false and q is true. This is one of the cases that is
vacuously true, and so, p ⇒ q is true. (We know this is true by
the value in the truth table on page 4.)

(c) It is not true that Google makes the iPhone, and it is not true
that buses can fly. So we have a statement of the form p ⇒ q
with both p and q false. However this is true, as this is another
vacuously true case.

(d) This is a statement of the form p ⇒ q where both p and q are
true. So we must accept the statement p ⇒ q as true.

In everyday conversation, we expect phrases linked together with
“If”-“then” or with an “or” to be related somehow. However, whether
the statement p ⇒ q indicates a relationship between p and q is irrel-
evant to whether it is true or false, only whether the components of
the satement are true or false matters. There is no obvious relationship
between Atlanta being Georgia’s capitol and the sides of an equilateral
triangle being equal, but this does not mean that the statement’s truth
value is false.

As statements get more complicated, we rely more on the sym-
Perhaps we should say
“more compounded”? bolic representation. Consider the statement

S : (¬p∧q) ⇒ (p∨q).

For a particular pair of truth values of p and q, we can determine the
truth value of S. To do this, we plug in the truth values for T and
F , and “compute” the truth value of S. The following example shows
how we can do such a computation.



8 logic and sets Ch. 1

� Example 1.2.B – Truth Table for a Compound Statement.

Create a truth table for S : (¬p∧q) ⇒ (p∨q).
� Solution. To create a truth table, we need to evaluate S at every pos-
sible of combination of the truth values of p and q. We will start with
p and q both having the value T . We can then “plug in” these values for
p and q and evaluate each part of the statement using the truth tables
from §1.1. We have

S = (¬T ∧T) ⇒ (T ∨T)
= (F ∧T) ⇒ (T ∨T)
= F ⇒ T
= F.

So when p = q = T , S = F . Now we need to do this for the other
three possible combinations of truth values. This can be accomplished
in a more compact fashion by constructing the truth table column by
column. Write columns for the various combinations of p and q, then
write the columns for the “sub-statements” involved in S. This is shown
below.

p q ¬p ¬p∧q p∨q S

T T F F T F
T F F F T F
F T T T T T
F F T F F T

The last column is obtained by evaluating the ¬p∧q column entries
and the p∨q column entries joined by ⇒ .

It is possible that we could have more than two simple statements
in a compound statement. For instance, the compound statement

S : (p∧¬q) � (r ∨p)

involves three statements p, q, and r . To create a truth table for S,
we need to consider all possible combinations of the values of T and
F for p, q, and r :

TTT TTF TFT TFF
FTT FTF FFT FFF.

Once the columns for p, q, and r are written, we move to the next
“sub-statement” which would be ¬q. Then we evaluate p∧¬q, then
r ∨p, and finally, (p∧¬q) � (r ∨p). The complete truth table is
in Figure 1.1 on page 9.

How do we decide which order to evaluate the sub-statements?
How do we order the columns in the truth table? Just as with arith-
metic and algebra, there is an order of operations for these logical
symbols. The order is

¬, ∧, ∨, ⇒ , � .
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Figure 1.1 – The truth
table for the statement
S : (p∧¬q) � (r ∨p).

p q r ¬q p∧¬q r ∨p S

T T T F F T F
T T F F F T F
T F T T T T T
T F F T T T T
F T T F F T F
F T F F F F T
F F T T F T F
F F F T F F T

With an understanding of this order, we do not have to write the
parentheses in the statement

S : (p∧¬q) � (r ∨p).

We can simply write

S : p∧¬q � r ∨p.
Parentheses are encouraged if it helps bring clarity to symbols, and
it is never wrong to correctly place as many parentheses as you want.

Besides, there is an infinite
supply of parentheses! From here on out, we will no longer write unneeded parentheses

in this book. That means ¬p∧q is unambiguously different from
¬(p∧q).

Problems for §1.2

1 Tautology and Contradiction. A compound
statement that has a truth value of T for all
truth values of the simple statements is called
a tautology. A compound statement that has
a truth value of F for all truth values of the
simple statements is called a contradiction. The
statement p∧(¬p) from §1.1, Problem 2(a)
is a contradiction because the result column
of the truth table was always F . There is a re-
lated statement that is a tautology—what is the
statement?

2 Interesting Implications.

(a) Compare your answer to §1.1, Problem
2(b) and the truth table for p ⇒ q on page
4. What does this imply about p ⇒ q and
¬p∨q?

(b) Find a way to write “It is not raining or I
am at the mall” in a logically equivalent
form using “if” and “then.”

(c) Create a truth table for the statement
¬p∨¬q. Compare this to the truth table
from §1.1, Problem 2(c). What conclu-

sions can you draw about the statements
¬p∨¬q and ¬(p∧q)?

(d) Find a way to write “It is not the case that
I was late for my job and that I got fired”
in a logically equivalent form using an “or”
statement.

3 Conditionals, Tautologies, and Contradictions.
Suppose p and q are statements. What can be
said of the conditional statement p ⇒ q in
each case?

(a) p is a contradiction.

(b) p is a tautology.

(c) q is a contradiction.

(d) q is a tautology.

4 More Truth Tables. Create a truth table for
each statement. (Recall the order of operations
for these symbols!)

(a) ¬(p∨q)
(b) ¬p∧¬q
(c) ((p ⇒ q)∧(q ⇒ r)) ⇒ (p ⇒ r)
(d) p∧q∨¬ r ⇒ q
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(e) p∧¬ r � q∨¬p
5 Do You Notice. . . .

(a) Identify any of the statements in Problem
4 that are tautologies.

(b) The truth tables in Problems 4(a) and 4(b)
are identical. What does this indicate?

(c) How many rows would there need to be in
a truth table for the compound statement
p∧q ⇒ r ∨ s? How many rows would
there need to be for five simple state-
ments? For six? Generalize: how many
rows are needed for n simple statements?

6 The Exclusive Or. The exclusive or, also short-
ened to xor, is the logical operator used to
mean that one can have p or q but not both.
Many people use many different symbols for
the exclusive or; in this book, we will use p�q.
(Another symbol used often is p ⊕ q.) The truth
table for the exclusive or is below.

p q p�q

T T F
T F T
F T T
F F F

Show that (p∨q)∧¬(p∧q) is logically equiv-
alent to p�q by creating a truth table and

verifying the last column matches the last
column of the truth table given for p�q.

7 Even More Translations. Let p = “the Declara-
tion of Independence was signed in Philadel-
phia,” s = “the Declaration of Independence
was signed in 1776,” and r = “the Declaration
of Independence started the American Revolu-
tion.” Translate the following from English to
symbols, or from symbols to English.

(a) If the Declaration of Independence was
signed in 1776, then it started the Ameri-
can Revolution.

(b) The Declaration of Independence was
signed in 1776 or in Philadelphia, but not
both.

(c) The Declaration of Independence started
the American Revolution but it was signed
in 1776.

(d) (p∧ s) ⇒ r .

(e) s∧p∧¬ r .

(f) ¬ r ∨ r .

(g) The Declaration of Independence started
the American Revolution only if it was
signed in 1776 but not if it was signed in
Philadelphia.

1.3 Conditional Statements

There can be no doubt that the knowledge of logic is of considerable
practical importance for everyone who desires to think and to infer correctly.

— Alfred Tarski, Introduction to Logic and to the Methodology of the Deductive Sciences

We saw conditional statements in the previous section; they areYou will learn . . .
1: to write the negation,

converse, inverse, and
contrapositive of a con-
ditional statement and
determine the truth value
of each;

2: to use DeMorgan’s laws
to write the negation
of “and” and “or” state-
ments;

3: to determine whether two
statements are logically
equivalent.

statements of the form p ⇒ q or of the form p � q. In this sec-
tion, we will work more with conditional statements. But first, we
will define what it means for two logical statements to be logically
equivalent.

In Example 1.2.B, we created a truth table for the statement S :
(¬p∧q) ⇒ (p∨q). It is reproduced below.

p q ¬p ¬p∧q p∨q (¬p∧q) ⇒ (p∨q)
T T F F T F
T F F F T F
F T T T T T
F F T F F T

Examine the final column (¬p∧q) ⇒ (p∨q) and the column ¬p.
These columns are identical. When this happens, we say that the
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compound statement (¬p∧q) ⇒ (p∨q) is logically equivalent to
¬p. That is, these two compound statements have the same truth
value for every truth value of the simple statements p and q. In
symbols, we denote logical equivalence with ≡ . In this example, we

The ≡ symbol is called the
equivalence symbol. would write

(¬p∧q) ⇒ (p∨q) ≡ ¬p.
Examining a truth table is one way to prove whether two state-

ments are logically equivalent.

� Example 1.3.A – The Negation of a Negation.

Show that ¬(¬p) ≡ p.

� Solution. Let’s create a truth table for ¬(¬p).
p ¬p ¬(¬p)
T F T
F T F

Since the last column is identical to the column for p, we do have
¬(¬p) ≡ p.

Two sets of important logical equivalences are known as De Mor-
gan’s laws.

Named after 19th century
English logician and
mathematician Augustus
De Morgan. He was fond
of obscure numerical facts
and liked to say that he
was x years old in the year
x2.

THEOREM 1 — De Morgan’s Laws.

Let p and q be simple statements. Then

¬(p∧q) ≡ ¬p∨¬q

and
¬(p∨q) ≡ ¬p∧¬q.

Proof. You have already proven these to be true! See §1.2, Problem
2(c) for the first equivalence and Problems 4(a) and 4(b) for the sec-
ond equivalence. �

� Example 1.3.B – Using De Morgan’s Laws.

Write the negation of the statement “Riri is a computer science major
and Shuri is an engineering major.”

� Solution. The statement is of the form r ∧ s, so by De Morgan’s laws,
the negation is ¬(r ∧ s) ≡ ¬ r ∨¬ s. Thus, the negation is “Riri is not a
computer science major or Shuri is not an engineering major.”

There are other useful properties that allow us to rewrite com-
pound statements. These other useful properties—listed in the theo-
rem on the next page—can be proved with truth tables. However, to
save a few pages, we will omit the proof of these properties.
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THEOREM 2 — Some Logical Equivalences.

Suppose p, q, and r are simple statements. Then we have the
following logical equivalences.

1. p∧q ≡ q∧p
2. p∨q ≡ q∨p (The commutative laws.)

3. (p∧q)∧ r ≡ p∧(q∧ r)
4. (p∨q)∨ r ≡ p∨(q∨ r) (The associative laws.)

5. p∧(q∨ r) ≡ (p∧q)∨(p∧r)
6. p∨(q∧ r) ≡ (p∨q)∧(p∨r) (The distributive laws.)

7. p∨(p∧q) ≡ p

8. p∧(p∨q) ≡ p (The absorption laws.)

Logical equivalences enable one to replace a complicated com-
pound statement with an equivalent simpler statement. This can aid
in reasoning, in writing, and in thinking. The logical equivalence of
a conditional statement p ⇒ q with its contrapositive ¬q ⇒ ¬p is
often useful. Indeed, we may show these are logically equivalent with
a truth table, as shown below.

p q ¬q ¬p ¬q ⇒ ¬p
T T F F T
T F T F F
F T F T T
F F T T T

Comparing the last column of this truth table with that of the truth
table for p ⇒ q on page 4, shows that

p ⇒ q ≡ ¬q ⇒ ¬p.

Being logically equivalent, a conditional statement and its contra-
positive will always have the same truth value.

� Example 1.3.C – Using the Contrapositive.

Consider the statement

If a person is innocent of a crime, then they are not a suspect.

This sounds like it could be true. But let’s examine the contrapositive
of this statement. The contrapositive is

If a person is a suspect, then they are not innocent of a crime.

The contrapositive is certainly false, as someone could be a suspect and
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still be found innocent of a crime. Hence, the original statement must
also be false.

Besides the contrapositive, we may also form the converse and
the inverse of a conditional statement. Given the statement p ⇒ q,
the converse is q ⇒ p and the inverse is ¬p ⇒ ¬q. The converse
of the statement in Example 1.3.C is

If a person is not a suspect, then they are innocent of a crime.

The inverse is

If a person is not innocent of a crime, then they are a suspect.

Are the converse and
inverse true?

Note that the inverse is the contrapositive of the converse, so the
inverse and converse are logically equivalent; i.e.,

q ⇒ p ≡ ¬p ⇒ ¬q.

� Example 1.3.D – Rewriting a Conditional Statement.

Consider the statement “If you paid full price, then you didn’t buy it
at Stan’s Club.” Write the contrapositive, converse, and inverse of this
conditional statement in symbols and in English.

� Solution. Let f = “you paid full price” and s = “you bought it at
Stan’s Club.” Then the original statement is f ⇒ ¬ s. Then

the contrapositive is s ⇒ ¬f ,
the converse is ¬ s ⇒ f ,

and the inverse is ¬f ⇒ s.

In English, the contrapositive is

If you bought it at Stan’s Club, then you didn’t pay full price.

The converse is

If you didn’t buy it at Stan’s Club, then you paid full price.

The inverse is

If you didn’t pay full price, then you bought it at Stan’s Club.

Many would probably think that the negation of a conditional
statement would mean that we negate the hypothesis and the con-
clusion. However, this is not correct! We can see why if we rewrite
the conditional statement according to what we did in §1.2, Prob-
lem 2(a). There, we found that the conditional statement p ⇒ q is
logically equivalent to ¬p∨q. Thus, to negate a conditional state-
ment, we negate ¬p∨q. To do this, we make use of the properties
introduced thus far.

¬(¬p∨q) ≡ ¬(¬p)∧¬q (by De Morgan’s Laws)

≡ p∧¬q. (by Example 1.3.A)

Thus, the negation of a conditional statement is not another condi-
tional, but it is an “and” statement!
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� Example 1.3.E – Negation of a Conditional.

Consider the statement “If you paid full price, then you didn’t buy it
at Stan’s Club.” Write the negation of this conditional statement in
symbols and in English.

� Solution. Let f = “you paid full price” and s = “you bought it at
Stan’s Club.” Our statement symbolically is f ⇒ ¬ s ≡ ¬f ∨¬ s. The
negation is therefore ¬(¬f ∨¬ s) ≡ f ∧ s. In English, this is “You paid
full price and you did buy it at Stan’s Club.”

This is not an exhaustive
list of conditions one must
meet in order to file using
Form 1040EZ!

� Example 1.3.F – A Taxing Contrapositive.

Consider the statement “If your filing status is single or married filing
jointly and if your adjusted gross income is less than $100,000 and if
you claim no dependents and if you do not itemize your deductions,
then you are eligible to file your income taxes with a Form 1040EZ.”
Write the contrapositive of this statement.

� Solution. There is so much here that going straight to the contrapos-
itive in English is too complicated. We would be wise to write this in
symbols, find the contrapositive of the symbolic statement, and then
translate that to English. To that end, let s = “your filing status is
single,” m = “your filing status is married filing jointly,” a = “your
adjusted gross income is less than $100,000,” d = “you claim no de-
pendents,” i = “you itemize your deductions,” and f = “you are eligible
to file your income taxes with a Form 1040EZ.” Then the statement in
symbols is

(s∨m)∧a∧d∧¬ i ⇒ f .

Thus, the contrapositive is

¬f ⇒ ¬((s∨m)∧a∧d∧¬ i)
≡ ¬f ⇒ (¬(s∨m))∨¬a∨¬d∨¬(¬ i)
≡ ¬f ⇒ (¬ s∧¬m)∨¬a∨¬d∨ i.

In English, this becomes the statement “If you are not eligible to file
your income taxes with a Form 1040EZ, then you are not single and not
married filing jointly, or your adjusted gross income is not less than
$100,000, or you claim dependents, or you itemize your deductions.”
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Problems for §1.3

1 The Contrapositive. Write the contrapositive of
each conditional statement below.

(a) If x ≥ 2, then x2 ≥ 4.

(b) If n is an even integer, then n2 is divisible
by 4.

(c) If today is Labor Day, then tomorrow is
Tuesday.

(d) If it ain’t broke, don’t fix it.

(e) If you want something done right, you
have to do it yourself.

(f) If these problems are not easy, then my
head will ache.

(g) If a person has not done anything wrong,
then they have nothing to hide.

(h) If a person did not vote in the election,
then they have no right to complain about
politics.

(i) If you don’t care that China has access to
your phone’s data, then use TikTok.

2 Translations to Symbols. Suppose s = “n is
divisible by 7,” and t = “n is divisible by 21.”
Consider the statement

If n is divisible by 21,
then n is divisible by 7.

Translate this into symbols, write the converse,
inverse, and contrapositive of each statement
in symbols and in English, and then determine
their truth values for all integers n.

3 Conditionals. Given the statement

If n is an odd integer,
then n2 + 1 is divisible by 8,

write the converse, inverse, and contrapositive
of the statement. Which of these four state-
ments (the original, the converse, the inverse,
or the contrapositive) do you think are true?

4 Conditional Equivalence. Are the following two
statements logically equivalent?

(1) A real number is less than 1 only if its
reciprocal is greater than 1.

(2) Having a reciprocal greater than 1 is a suf-
ficient condition for a real number to be
less than 1.

Justify your answer.

5 Symbolic Statements. Write the contrapositive
and the negation of each statement in symbols.

(a) (p ⇒ q) ⇒ r
(b) (p∨q) ⇒ r

(c) p ⇒ (q∨ r)
(d) ¬p ⇒ (q∧ r)

6 More Negations. Write the negation of each
statement.

(a) Clark is a reporter and Bruce is a million-
aire.

(b) The hdmi connector is loose or the projec-
tor is unplugged.

(c) If n is divisible by 5, then the units digit of
n is 0 or 5.

(d) If you eat your vegetables, then you may
have cake or cookies for dessert.

(e) If x2 ≤ 9, then x ≥ −3 and x ≤ 3.

(f) If a person has not done anything wrong,
then they have nothing to hide.

(g) Jeff is wealthy and generous, or Jeff is
insane.

7 Unless. In everyday English, we say statements
with the word “unless.” Logically, to say p un-
less q means that as long as q does not happen,
then p will happen. In symbols,

p unless q ≡ ¬q ⇒ p.

Write the statement “The door will not open
unless you have the passcode” in if-then form.
What is the contrapositive of this statement?

8 Various Conditionals. Consider the following
statement: “If the solution is not boiling, then
its temperature must be less than 302◦F.” As-
suming that this statement is true, which of the
following must also be true?

A) If the temperature of the solution is less
than 302◦F, then the solution is not boil-
ing.

B) If the temperature of the solution is at
least 302◦F, then the solution is boiling.

C) The solution will boil only if its tempera-
ture is less than 302◦F.

D) If the solution is boiling, then its tempera-
ture is at least 302◦F.

E) A necessary condition for the solution
to not boil is that its temperature be less
than 302◦F.

F) A sufficient condition for the solution to
not boil is that its temperature be less
than 302◦F.

G) The temperature of the solution is less
than 302◦F unless the solution is boiling.
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2.8 Linear Combinations

To some extent the beauty of number theory seems to be related to the contradiction between the
simplicity of the integers and the complicated structure of the primes, their building blocks.

This has always attracted people.

— Andreas Knauf, Number Theory, Dynamical Systems and Statistical Mechanics

The Euclidean algorithm not only provides a way to find the great-You will learn . . .
1: to write the gcd of two

positive integers as
a linear combination
of those two positive
integers;

2: to apply the linear combi-
nation of the gcd to prove
statements about the gcd.

est common divisor of two integers a and b. It also helps us write
the greatest common divisor of a and b in the form ax + by for
some integers x and y . This form is called the linear combination of
a and b. It turns out that this form is quite useful for many different
things, and we will call upon a linear combination of a and b often.

Indeed, we have already seen linear combinations at work. Recall
from §2.2 the problem of proving that all amounts of money greater
than 11 cents can be made using only 3-cent and 7-cent coins (Theo-
rem 24). We noted that 13 cents can be made with two 3-cent coins
and one 7-cent coin. This is a linear combination: 13 is the linear
combination of 3 and 7, since 13 = 3 · 2 + 7 · 1. Additionally, 14 is
the linear combination of 3 and 7, since 14 = 3 · 0 + 7 · 2, and 15 is
the linear combination of 3 and 7, since 15 = 3 · 5 + 7 · 0.

If we allow negative integers as possible values of x and y (which
removes this from the “practical” coin problem), then we may also
write 11 as a linear combination of 3 and 7 as 11 = 3 ·55+7 · (−22).
We can also write 1 as a linear combination of 3 and 7 as 1 = 3 · 5 +
7 · (−2).

However, writing any integer as a linear combination of any other
pair of integers does not always work. For instance, there is no way
to write 1 as a linear combination of 6 and 9. Let’s justify this. For
the sake of contradiction, suppose we could. Then there are integers
x and y such that 1 = 6x + 9y . Then 1 = 3(2x + 3y). However, the
right side, 3(2x + 3y), is divisible by 3, but the left side is not; this
is impossible. Thus, 1 ≠ 6x + 9y . Now, if the number on the right
was a multiple of 3, this would be possible! Certainly, 3 = 6x + 9y
for x = 2 and y = −1. But notice that we can divide both sides of
3 = 6x+9y by 3, giving us 1 = 2x+3y which is satisfied by x = −1
and y = 1. That is, we can reduce 3 = 6x+9 by the greatest common
factor of 6 and 9. This leads us to the next theorem.

THEOREM 40 — GCD and Linear Combinations.

Let a,b ∈ Z, b ≠ 0, and let d = gcd(a, b). Then d is the small-
est positive linear combination of a and b, and all other linear
combinations of a and b equal multiples of d.

Proof. Let a,b ∈ Z, b ≠ 0, and let d = gcd(a, b). In using the Eu-
clidean algorithm to compute d, we find that d = rn−1, the last
nonzero remainder. The equation resulting from the (n − 1)th di-
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vision is rn−3 = rn−2qn−1 + rn−1. From this, we can write

d = rn−1 = rn−3 − rn−2qn−1 = rn−3 · 1 + rn−2 · (−qn−1).

Thus, d is a linear combination of rn−3 and rn−2. Now we take the
equation resulting from the (n − 2)th division, rn−4 = rn−3qn−2 +
rn−2. Solving this equation for rn−2, we then have

d = rn−1 = rn−3 · 1 + rn−2 · (−qn−1)
= rn−3 · 1 + (rn−4 − rn−3qn−2 · (−qn−1)
= rn−3 − rn−4qn−1 + rn−3qn−2qn−1

= rn−3(1 + qn−2qn−1)+ rn−4 · (−qn−1).

Thus, d is a linear combination of rn−3 and rn−4. Expressing rn−3

from the (n − 3)th division and substituting, we will arrive at the
fact that d is a linear combination of rn−4 and rn−5. Continue this
process—going “backwards” through the Euclidean algorithm—and
we will obtain in the final step that d is a linear combination of a and
b. This must be the smallest positive linear combination: if there
were one smaller, then that would be the greatest common divisor of
a and b.

Now consider as + bt for some integers s and t. Since d |a and
d |b, then d |(as + bt). Hence, ∃ k ∈ Z s.t. dk = as + bt. Therefore
any other linear combination of a and b is a multiple of d. �

The proof of the previous theorem shows how to actually find a
linear combination of gcd(a, b) in terms of a and b. We do this in
the next example.

� Example 2.8.A – Finding a Linear Combination.

In Example 2.7.C, we found that gcd(23408,171304) = 1064. Thus we
can write 1064 as a linear combination of 23408 and 171304. Solving
the equation 23408 = 7448 · 3+ 1064 for 1064, we get 1064 = 23408+
7448 · (−3). Solving the equation 171304 = 23408 · 7 + 7448 for 7448,
we get 7448 = 171304+ 23408 · (−7). Now we substitute.

1064 = 23408+ 7448 · (−3)
= 23408+ (171304+ 23408 · (−7)) · (−3)
= 23408+ 171304 · (−3)+ 23408 · (−7) · (−3)
= 23408 · (1 + (−7) · (−3))+ 171304(−3)
= 23408 · 22 + 171304 · (−3).

Hence, 1064 = 23408 · 22 + 171304 · (−3).

� Example 2.8.B – Finding a Linear Combination.

In Example 2.7.D, we found that gcd(2027,5040) = 1. Thus we can
write 1 as a linear combination of 2027 and 5040. Solving the equation
4 = 3 · 1 + 1 for the remainder 1, we get 1 = 4 + 3 · (−1). Solving the
equation 51 = 4 · 12 + 3 for 3, we get 3 = 51 + 4 · (−12). Now we
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substitute.

1 = 4 + 3 · (−1)
= 4 + (51 + 4 · (−12)) · (−1)
= 4 · 13 + 51 · (−1).

Next, we solve 55 = 51 · 1 + 4 for 4 to get 4 = 55 + 51 · (−1). Now
substitute:

= (55 + 51 · (−1)) · 13 + 51 · (−1)
= 55 · 13 + 51 · (−14)

Now we move to the equation 986 = 55 ·17+51, which we solve for 51:
51 = 986 + 55 · (−17). Then

= 55 · 13 + (986+ 55 · (−17)) · (−14)
= 55 · 251+ 986 · (−14)

From 2027 = 986 · 2 + 55 we write 55 = 2027+ 986 · (−2). Then

= (2027+ 986 · (−2)) · 251 + 986 · (−14)
= 2027 · 251 + 986 · (−516)

Finally, we use 5040 = 2027 ·2+986 to write 986 = 5040+2027 · (−2).
We get

= 2027 · 251 + (5040+ 2027 · (−2)) · (−516)
= 2027 · 1283+ 5040 · (−516).

Hence, 1 = 2027 · 1283+ 5040 · (−516).

The fact that we can write the greatest common divisor of a and
b as a linear combination of a and b implies the following: a ⊥ b if
and only if 1 can be written as a linear combination of a and b.

The fact that we can write the greatest common divisor of a and
b as a linear combination of a and b also allows us to prove some
rather interesting facts.

THEOREM 41.

Let a,b, c ∈ Z+. If gcd(a, c) = 1 and gcd(b, c) = 1, then
gcd(ab, c) = 1.

Proof. Let a,b, c ∈ Z+ s.t. gcd(a, c) = gcd(b, c) = 1. Then by Theo-
rem 40, ∃ s, t, x,y ∈ Z s.t. 1 = as + ct and 1 = bx + cy . Multiply
these equations together. This gives us

1 = (as + ct)(bx + cy)
= (as)(bx)+ (as)(cy)+ (ct)(bx)+ (ct)(cy)
= (ab)(sx)+ c(asy + tbx + cty).
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The integers are closed, so sx ∈ Z and asy + tbx + cty ∈ Z. Let
m = sx and n = asy + tbx + cty . Then 1 = (ab)m+ cn expresses
1 as a linear combination of ab and c. Therefore, gcd(ab, c) = 1. �

THEOREM 42.

For a,b ∈ Z, gcd(a, b) = d if and only if gcd(a/d, b/d) = 1.

Proof. Let a,b ∈ Z s.t. gcd(a, b) = d. Then by Theorem 40, ∃ x,y ∈
Z s.t. d = ax + by . However, since d |a and d |b, we may divide
the equation d = ax + by by d to get 1 = (a/d)x + (b/d)y . Hence,
gcd(a/d, b/d) = 1.

Now assume gcd(a/d, b/d) = 1. Then by Theorem 40, ∃ s, t ∈
Z s.t. 1 = (a/d)s + (b/d)t. Multiplying both sides of this equation
by d yields d = as + by . Hence, gcd(a, b) = d. �

Finally, we have all we need to prove an important result about
Important? Some would
say it’s fundamental! the prime factorization of an integer.

THEOREM 43 — The Fundamental Theorem of Arithmetic.

Every integer greater than 1 is either prime or can be expressed
uniquely (disregarding the order of the factors) as a product of
primes.

Proof. Let n ∈ Z where n > 1. We will use strong induction. Strong
Basis. If n = 2, the statement is true since 2 is prime.

Strong inductive hypothesis. Assume the statement is true for all
n where 2 ≤ n < m. That is, assume that n is either prime or can be
expressed uniquely as a product of primes for all values of n from 2
to m − 1.

Proof of strong induction. By Theorem 25, m is either a prime or
a product of primes. If m is prime, we are done. So assume m is a
product of primes. For the sake of contradiction, let m have the two
prime factorizations

m = p1 · p2 ·p3 · · ·pi = q1 · q2 · q3 · · ·qk,

where the primes are not necessarily distinct. We want to show that
this assumption leads to a contradiction. Now, since p1 |m and
p1 |q1 · q2 · q3 · · ·qk, then p1 |qj for some j, 1 ≤ j ≤ k. But qj
is prime as well, so p1 = qj . Relabeling qj as q1, we have p1 = q1.
Now consider the integer

n
p1

= p2 · p3 · · ·pi = q2 · q3 · · ·qk < n.

The integer n/p1, being less than n, is covered by the inductive hy-
pothesis, so n/p1 is a unique product of primes. Hence, i = k, and
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after a suitable rearrangement, pj = qj for j = 2,3, . . . , k. This is the
contradiction we seek; indeed, multiplying by p1 we get

n = p1 · p2 · p3 · · ·pk = p1 · q2 · q3 · · ·qk.

Therefore, the prime factorization is unique. �

Problems for §2.8

1 Linear Combinations. For each pair of integers
a, b in §2.7, Problem 1, find integers x and y
such that ax + by = gcd(a, b).

2 Integer Solutions. Does 637x + 5005y = 91
have an integer solution? How do you know
without actually finding the solution?

3 Proofs. Prove the following statements.

(a) Let a,b, c ∈ Z. If c |ab and gcd(a, c) = 1,
then c |b. (This result is known as Euclid’s
Lemma.)

(b) Let a,b, c ∈ Z. If a |c, b | c, and
gcd(a, b) = 1, then ab | c.

(c) Let a,b ∈ Z, n ∈ Z+, and ab ≡ 1 mod n.
Prove that a ⊥ n and b ⊥ n.

(d) Let a ∈ Z, n ∈ Z+, and a ⊥ n. Prove
∃ b ∈ Z s.t. ab ≡ 1 mod n.

4 More Linear Combinations. Find integers x, y ,
and z such that 78x+ 403y + 754z = 13. (Hint:
Remember §2.7, Problem 3?)

5 A Throwback. How many points (x,y) with
integer coordinates lie on the line 5x + 7y = 1
where x and y are each greater than −100 and
each less than 100?

6 Least Common Multiple. The least common
multiple of two integers a and b is the smallest
integer which both a and b divide. We denote
this by lcm(a, b).

(a) Let a,b ∈ Z+. Prove that ab/ gcd(a, b) =
lcm(a, b).

(b) Use part (a) to find lcm(12,30).
(c) Use part (a) to find lcm(56,88).
(d) Use part (a) to find lcm(385,1001).
(e) Use part (a) to find lcm(1739,29341).

2.9 Linear Congruences

Mathematics is the queen of the sciences and number theory is the queen of mathematics.
She often condescends to render service to astronomy and other natural sciences,

but in all relations she is entitled to the first rank.

— Karl Gauss, quoted in Gauss, zum Gedächtnis, by Wolfgang von Waltershausen

What integer leaves a remainder of 4 when divided by 7? ThatYou will learn . . .
1: to solve linear congru-

ences;
2: to find the inverse of

an integer for a certain
modulus.

seems like an easy problem. A moment’s thought and we can easily
come up with and an answer: 11. But there are more: 18, 25, 32,
and so on. And let’s not forget 4 as a solution! And of course, the
problem did not specify that the integer we want had to be positive!
That means −3 works, as does −10, −17, −24, and so on. In fact,
every integer that can be represented as 7n+4 for n ∈ Z is a solution
to this problem. Hence, the solution set is {x ∈ Z | x = 7n+4 ∀ n ∈
Z}.

This problem really asks us to find an integer that is congruent
to 4 modulo 7. That is, we are asked to solve the linear congruence
x ≡ 4 mod 7. We have found the solution to be x = 7n+4 for n ∈ Z.
We can also get this solution using the definition of congruent. Since
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3.8 Trees

It has been said that combinatorics is both the easiest and hardest field of mathematics. Easy since a lot of
it requires no prerequisite knowledge. Hence a High School Student can do work in it. Hard because a lot of

it requires no prerequisite knowledge. Hence you can’t easily apply continuous techniques.

— William Gasarch, Open Problems Column, SIGACT News, March 2020

Now we will focus on a particular type of graph called a tree. AYou will learn . . .
1: to use properties of trees

to prove statements about
them;

2: to compute the number of
distinct labeled trees on n
vertices;

3: to find a spanning tree of
a graph.

tree is a connected graph that has no circuits; in other words, a tree
is a connected graph that is circuit-free. It is possible for a non-
connected graph to have connected components that are trees. If
that is the case, then the graph with each connected component a
tree is called – wait for it – a forest.

� Example 3.8.A – Some Trees.

The following graphs are trees. Note that the graph T4 is not connected,
but each component is a tree. Hence T4 is a forest.

T1 T2 T3 T4

The following graphs are not trees. Notice that they contain at least
one circuit.

G1 G2 G3 G4

Trees have useful and interesting properties.

THEOREM 68.

Any tree with more than one vertex has a vertex of degree 1.

Proof. For the sake of contradiction, suppose G is a tree with more
than one vertex that has no vertices of degree 1. Then each vertex has
degree at least 2. It follows that G has a circuit, but this contradicts
the fact that G is a tree. Hence, G must have at least one vertex of
degree 1. �
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THEOREM 69 — The Tree Theorem.

Let n ∈ Z+ and let G be a connected graph on n vertices. G is a
tree if and only if G has n− 1 edges.

Proof. Let n ∈ Z+ and let G be a connected graph on n vertices.
Suppose G is a tree. We will show that G has n− 1 edges.

Basis. There is only one tree on one vertex, and it has 1 − 1 = 0
edges. The statement is true for n = 1.

Induction hypothesis. Assume the statement is true for n = k.
That is, assume that a tree on k vertices has k− 1 edges.

Proof of induction. Now we must show the statement true for
n = k + 1. That is, we must show that a tree on k + 1 vertices has
k+1−1 = k edges. Consider the tree G on k+1 vertices. By Theorem
68, there is at least one vertex of G with degree 1. Let v be a vertex
of G with degree 1, and consider the graph T formed by removing
vertex v and its incident edge. Then T is a tree on k vertices. By
the induction hypothesis, T has k−1 edges. Adding vertex v and its
incident edge back to the tree, the result is a graph with one more
vertex and one more edge. Hence, G has k+1 vertices and k−1+1 = k
edges.

Now suppose G has n−1 edges. We will show that G is a tree. For
the sake of contradiction, assume that G is not a tree; that is, assume
that G has a circuit. Remove edges from the circuit until we obtain
a connected graph H without a circuit. Suppose we remove m such
edges. Then H is a tree on n vertices with n−1−m edges. However,
this contradicts the fact that a tree on n vertices must have n − 1
edges. Therefore, G must be a tree. �

Trees can be used to model many practical situations, such as
ancestry, computer database searching, and many others. We have
seen one example already at the beginning of this chapter (Figure 3.1
on page 124), which is known as a decision tree. Another fascinating
example of the uses of trees is chemistry. Consider the two chemicals
methylpropane and butane, shown below in Figure 3.16.

Both methylpropane and butane have the chemical formula C4H10,
but they are different molecules because of the way the carbon atoms
are connected. Viewing the molecules as a graph, we could create an
adjacency matrix for such a molecule. Certain properties of the ma-
trix (which we will not go into here) correspond to certain properties
of the molecule. This field of study is called spectral graph theory.

Figure 3.16 – The
chemicals butane (left)
and methylpropane
(right) both have the
same chemical formula.
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Without going into adjacency matrices, we can see that each carbon
atom must have degree 4. However, to maintain this degree, the car-
bon atoms themselves must form a tree! Then the question naturally
arises: How many other molecules are there with 4 carbon atoms and

Figure 3.17 – The two
non-isomorphic trees on
4 vertices.

10 hydrogren atoms? That is, how many other non-isomorphic trees
are there on 4 vertices? As it turns out, there are only 2. The number
of non-isomorphic trees on n vertices is an open research problem;
that is, no one has been able to find a formula in terms of n for this
number. However, the numbers of such graphs have been computed
for very large values of n.

For instance there are 11
non-isomorphic trees on
7 vertices, but there are
823065 on 20 vertices!
For a list, see sequence
A000055 in The On-Line
Encyclopedia of Integer
Sequences.

One question that we can answer is the total number of trees
(whether isomorphic or not) on n distinct vertices. We count trees on
distinct vertices by considering each vertex to be labeled. In this way,
we count the possible ways to join distinct vertices with an edge. So
what we are really counting is how to assign degrees to each vertex.
For instance, a tree on 3 vertices must have degrees 1, 1, and 2, but
there are 3 ways to assign which distinct vertex gets the degree of 2.
This creates 3 possible ways to create a tree on 3 distinct vertices.

If the vertex is left unla-
beled – that is, if we did
not consider them distinct
– there is only 1 tree on 3
vertices.

To prove this requires the fact that the total degree of any tree on n
vertices is 2n− 2. (You will prove this fact in Problem 5.)

THEOREM 70 — The Number of Trees of Given Vertex Degrees.

Let n ∈ Z+ and let d1, d2, . . . , dn be a sequence of n postitive
integers such that d1 + d2 + · · · + dn = 2n− 2. Then there are

(
n− 2

d1 − 1, d2 − 1, . . . , dn − 1

)

labeled trees on n vertices, where deg(vk) = dk for k = 1,2, . . . , n.

Proof. Let n ∈ Z+ and let d1, d2, . . . , dn be a sequence of n postitive
integers such that d1 +d2 +· · ·+dn = 2n−2. Basis. Let n = 2. Then
there is 1 tree on 2 vertices. This tree has two vertices and one edge,
so deg(v1) = d1 = 1 and deg(v2) = d2 = 1. We also have

(
2 − 2

1 − 1,1 − 1

)
=
(

0
0,0

)
= 0!

0!0!
= 1.

Thus, the statement is true for n = 2.
Induction hypothesis. Assume the statement is true for n = m.

That is, assume that there are
(

m − 2
d1 − 1, d2 − 1, . . . , dm − 1

)

trees on m vertices where deg(vk) = dk for k = 1,2, . . . ,m.
Proof of induction. Now we show the statement is true for n =

m+ 1. That is, we will prove that there are
(

m − 1
d1 − 1, d2 − 1, . . . , dm+1 − 1

)
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trees on m+1 vertices where deg(vk) = dk for k = 1,2, . . . ,m+1. By
Theorem 68, there is some vertex of degree 1. Let v1 be this vertex.

If v1 is not a vertex of
degree 1, we can re-label
the vertices so that v1 be-
comes a vertex of degree
1.

Any of the other m vertices could be adjacent to v1. Hence, of the
m other vertices, one of the them has degree one less. Thus, by the
induction hypothesis, the number of trees on m vertices is

(
m− 2

d2 − 2, d3 − 1, . . . , dm − 1

)
+
(

m− 2
d2 − 1, d3 − 2, . . . , dm − 1

)

+ · · · +
(

m− 2
d2 − 1, d3 − 1, . . . , dm − 2

)

since v1 could be adjacent to any of the other vertices. Finally, by
Theorem 59, this sum is

(
m− 1

d2 − 1, d3 − 1, . . . , dm

)
=
(

m− 1
0, d2 − 1, d3 − 1, . . . , dm

)

=
(

m− 1
d1 − 1, d2 − 1, . . . , dm

)
.

Note that d1 = 1 so that d1 − 1 = 0, and thus deg(vk) = dk for
k = 1,2, . . . ,m+ 1. Therefore, the statement is true for n ∈ Z+. �

Now we are able to use Theorem 70 to help us prove a statement
concerning the total number of trees on any number of distinct ver-
tices.

THEOREM 71 — The Number of Trees.

The number of trees on n labeled vertices is nn−2.

Proof. Let n ∈ Z+. Suppose n vertices are labeled v1, v2, . . . , vn, and
the degree of vertex vi is di for i = 1,2, . . . , n. The total degree is
therefore d1 + d2 + · · · + dn = 2n− 2. Note that

d1 − 1 + d2 − 1 + · · · + dn − 1 = 2n− 2 −n = n− 2.

Then the number of all possible trees is the sum

∑
d1,d2,...,dn≥1

d1+d2+···+dn=2n−2

(
n− 2

d1 − 1, d2 − 1, . . . , dn − 1

)
.

This sum represents the sum of all n−2 multinomial coefficients. By
Problem 5(e) of §3.3, this is nn−2. �

Using ideas from combinatorics to determine facts about graphs
is the field of combinatorial graph theory. What we have introduced

This was my own research
interest for my post-
graduate degrees.

so far in counting the number of trees on n vertices is the tip of the
iceberg of this growing field of study. There is also an overlap of
techniques and topics with spectral graph theory which adds to the
interest.
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� Example 3.8.B – The Number of Trees.

How many trees are there on 5 vertices with degrees 1, 1, 1, 2, and 3?
How many trees are there on 5 distinct vertices?

� Solution. By Theorem 70, there are
(

5 − 2
0,0,0,1,2

)
=
(

3
1,2

)
= 3!

1!2!
= 3

trees on 5 vertices with degrees 1, 1, 1, 2, and 3. By Theorem 71, there
are 55−2 = 53 = 125 trees on 5 distinct vertices.

Trees can be found in many places, even in other graphs! Con-
sider a graph G on n vertices. A tree that contains every vertex of G
is called a spanning tree.

� Example 3.8.C – A Spanning Tree.

In the graph G, below find a spanning tree.

� Solution. One such spanning tree is below.

Of course, there are others. Another one is below.

Note that the spanning trees are, by definition, subgraphs of G.

One question we can ask about spanning trees concerns how many
spanning trees a given graph can have. Unfortunately, there is no
simple formula for this either! The formulas involve altering the ad-
jacency matrix of the graph and then computing certain quantities;
so an operation exists to find this number, but no simple formula.
However, there are simple formulas for certain kinds of graphs.

THEOREM 72 — Number of Spanning Trees in Complete Bipartite
Graphs.

Let n,m ∈ Z+. The number of spanning trees on the complete
bipartite graph Km,n is mn−1nm−1.

Proof. Let n,m ∈ Z+. The vertices of Km,n are split into two disjoint
subsets such that each of the m vertices is adjacent to each of the
n vertices. Note that the total degree of every spanning tree of Km,n
is 2(m + n) − 2. Thus the sum of the degrees of the m vertices is
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d1 +d2 +· · · +dm =m+n−1, and the sum of the degrees of the n
vertices dm+1+dm+2+· · ·+dm+n =m+n−1. Now we use Theorems
70 and 71. Note that d1 −1+d2−1+· · ·+dm−1 =m+n−1−m =
n− 1. Summing all possible trees on the m vertices, we get

∑
d1,d2,...,dm≥1

d1+d2+···+dm=n−1

(
n− 1

d1 − 1, d2 − 1, . . . , dm − 1

)
=mn−1.

Now for the other vertices. Note that dm+1 − 1 + dm+2 − 1 + · · · +
dm+n − 1 = m + n − 1 − n = m − 1. Summing all possible trees on
the n vertices, we get

∑
d1,d2,...,dn≥1

dm+1+dm+2+···+dm+n=m−1

(
m− 1

dm+1 − 1, dm+2 − 1, . . . , dm+n − 1

)
= nm−1.

By the multiplication rule, the total number of spanning trees of Km,n
is mn−1nm−1. �

Problems for §3.8

1 Trees. Which of the graphs in §3.6, Problem 2
are trees? Which, if any, are forests?

2 Chemistry. There are three possible ways to
draw a graph representing C5H12. Draw them,
assuming each carbon atom has the maximum
number of hydrogen atoms.

3 Number of Trees. Compute the number of

(a) trees on 6 vertices of degrees 1, 1, 2, 2, 2,
2.

(b) trees on 6 vertices of degrees 1, 1, 1, 1, 2,
4.

(c) trees on 8 vertices of degrees 1, 1, 1, 1, 1,
3, 3, 3.

(d) trees on 2 distinctly-labeled vertices.
(e) trees on 6 distinctly-labeled-vertices.
(f) trees on 8 distinctly-labeled-vertices.
(g) spanning trees on K3,4.
(h) spanning trees on K5,5.

4 Spanning Trees. Suppose the graph G has 15
vertices and 22 edges. How many edges would
need to be removed to obtain a spanning tree
of G?

5 Proofs. Prove the following statements about
trees.

(a) The total degree of any tree on n vertices
is 2n− 2.

(b) Every edge of a tree is a bridge.

(c) If G is a tree, then there is a unique path
between any two vertices of G.

(d) If there is a unique path between any two
vertices of a connected graph G, then G is
a tree.

(e) If a connected graph G has n vertices and
m edges, where m ≥ n, then G has a
circuit.

(f) The total number of spanning trees of the
complete graph Kn is nn−2.

(g) The total number of spanning trees of the
cycle graph Cn is n.

6 Trees and Degrees. Suppose T is a tree on n
vertices. What is the largest possible degree of
a vertex of T?

7 Chemistry. Let G be a graph representing a
molecule made from c carbon atoms and h
hydrogen atoms, where there are the maximum
number of hydrogen atoms for each carbon
atom. What is the total degree, in terms of c
and h, of G?


