
The History of Mathematics

F Last-Minute Problems, No. 4 f

1 Textbook Problems. [2] p.163 #1; p.164 #4; p.169 #4(a); p.170 #5.

2 The Euclidean Algorithm. [2] There is non-geometrical material in the
Elements, such as the Euclidean algorithm, a process for finding the greatest
common divisor (gcd) of two numbers. This is found at the beginning of Book
VII, but was presumably known before Euclid’s time. The process is this:

Divide the larger of the two numbers by the smaller one. Then divide
the divisor by the remainder. Continue this process, of dividing the last
divisor by the last remainder, until there is no remainder. The final
divisor is the gcd.

For example, let us find the gcd of 126 and 210. We divide 210 by 126 to get 1
with remainder 84. Next, we divide the divisor, 126, by the remainder, 84, to get
1 with new remainder 42. Now divide the previous divisor, 84, by the previous
remainder, 42, to get 2 with no remainder. Now that we have no remainder, we
know that the gcd was the last nonzero remainder we used: 42. So the gcd of 126
and 210 is 42. 2a) Find the gcd of 481 and 851. 2b) Find the gcd of 5913 and
7592. 2c) Find the gcd of 1827 and 3248. In all three parts, your work must reflect
appropriate use of the Euclidean Algorithm.

3 There are Infinitely Many Primes. [5] From Euclid’s Prop. IX-20, we
know that we’ll never run out of primes.∗∗ In addition, since all primes but 2 are
odd, we can divide the odd primes into two categories—those that are one more
than a multiple of 4 (e.g., 5, 13, 17, 29, . . . ) and those that are three more than a
multiple of 4 (e.g., 3, 7, 11, 19, . . . ). Obviously, at least one of these two categories
of primes must be infinite. In what follows, we’ll modify Euclid’s proof of IX-20
to show that there are infinitely many primes of the form p = 4n + 3.

3a) Prove that the product of two numbers, each of which is one more than a
multiple of 4, is itself one more than a multiple of 4. In other words, if
a = 4m + 1 and b = 4n + 1, then ab also has this form. (Of course, all
numbers here are positive integers.)

3b) Now suppose that {a, b, c, d, . . . , w} is a finite collection of primes (in Euclid’s
words, an “assigned multitude”), each having the form 4n+ 3. We introduce
a new number M = 4(abcd · · ·w) − 1. Mimic Euclid’s two cases from IX-
20 to show that there must be a prime of the form 4n + 3 not among the
original multitude. Conclude that there are infinitely many primes of the
form 4n + 3. (Hint: Use the property that positive integers have a unique
prime factorization and part 3a.)

3c) Are there infinitely many composites of the form 4n + 3? Explain.

∗∗If you haven’t read IX-20 yet, you really should before starting this problem. For this and other
problems, you may find it helpful to consult the home of the amazing on-line version of the Elements

at https://mathcs.clarku.edu/∼djoyce/java/elements/elements.html
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4 The Logical Role of the Parallel Postulate. [2] None of the propositions
in Book I prior to Proposition I-29 uses the Parallel Postulate in its proof, whereas
all the later results in Book I depend on the Parallel Postulate, with a single
exception. Find it. Speculate as to why Euclid didn’t put it before I-29.

5 The Pythagorean Theorem. . . One More Time. [2] The previous six proofs
of the Pythagorean Theorem from Last-Minute Problems #2 give an array of
possible ways of establishing the theorem, but it should be noted that Euclid used
none of them in the Elements. Read the proof contained in the Elements (Prop.
I-47). Which of the previous six could he have used as Prop. I-47? Do you give
Euclid high marks for the proof he actually devised for the Elements, or did he
miss an easy proof?

6 The Platonic Solids—They Swear They Are Just Friends. [2.5] The
final book of the Elements is devoted to the construction of the regular polyhedra
known as the Platonic Solids: the tetrahedron (all 4 faces are equilateral triangles),
cube (6 squares), octahedron (8 equilateral triangles), dodecahedron (12 regular
pentagons), and icosahedron (20 equilateral triangles). The first three solids were
known before the Greeks, and there is an extant bronze dodecahedron dating
from the seventh century bc. The icosahedron was apparently first studied by
Theaeteus (417-369 bc), who also proved that these are the only regular polyhedra.
Euclid constructed these by inscribing them in spheres; then compared the exact
side lengths of each solid to the diameter of the sphere. If we let the diameter of
the sphere be 1 unit, these are the side lengths found by Euclid:

Tetrahedron:

√

2

3
Cube:

√

1

3
Octahedron:

√

1

2

Dodecahedron:

√
15 −

√
3

6
Icosahedron:

√

50 − 10
√

5

10

What is truly remarkable is that, with the lack of a good number system and
the complete absence of algebraic notation, Euclid accomplished this task! Your
task is to find decimal approximations to these measurements, then to find the
(approximate) surface area of each solid. (You may want to look up the surface
area formulas.)

7 A Smattering of “Elemental” Results. [7.5] Using your online resources,
look up each of the Propositions mentioned in the problems below.

7a) What familiar relationship is expressed in Prop. I-47? How can you determine
what that relationship is just from the diagram?

7b) Read the proof of Prop. II-1. Translate this into a simple algebraic identity.

7c) Read the proof of Prop. II-13. What is the famous result from trigonometry
that you should recognize here?
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7d) Read the proof of Prop. III-1. Use a compass and a straightedge to follow
along with the proof, and construct the center of a given circle yourself. What
method of proof did Euclid use?

7e) Read the statement of Prop. III-16. What type of line is Euclid defining
here?

7f) What does Prop. XII-2 say in modern language? That is, what formula is
implied by this Proposition?

7g) Translate Prop. XII-7, Prop. XII-10, and Prop. XII-18 into modern algebraic
formulas.

7h) Look up online the logo of the national high school mathematics honor so-
ciety, Mu Alpha Theta. Do you recognize that particular arrangement of
shapes? Where does it come from?

8 Data. [1.5] One of Euclid’s other works was called simply Data. A “datum” is
a set of parts or relations of a figure such that if all but any one is given, then
the remaining one is determined. For example, angle A, opposite side a, and
circumradius R of a triangle constitute a datum, since given any two the third is
determined (in this case, by the relation a = 2R sinA). Show that the following
parts of a triangle constitutes a datum by finding the formula or property that
relates the three quantities: 8a) the angles A, B, C; 8b) angle A, side b, altitude
hc on side c; 8c) the ratios of the sides: a/b, b/c, c/a.

9 Pushing Past Geometrical Limits. [3]

9a) Knowing how to measure lengths of straight-line segments, how might one
define the length of the circumference of a circle?

9b) Knowing how to measure areas of polygons, how might one define the area
of a circle?

9c) Let Pn and An denote the perimeter and the area of a regular n-gon circum-
scribed about a circle of unit diameter. Find

lim
n→∞

Pn and lim
n→∞

An.

9d) Knowing the volume of a pyramid is given by one-third the area of its base
times its altitude, how might one arrive at the formula for the volume of a
circular cone?

We know that the area of the lateral surface of a regular prism (the rectangular
faces that constitute the sides) is given by the perimeter of its base times its
altitude. One might think that the lateral surface area of a circular cylinder
could be defined as the limit of the areas of any sequence of inscribed polyhedral
faces, provided the number of faces indefinitely increases so that the area of each
face approaches zero. Mathematicians were surprised when, in the early 1860s,
H.A. Schwartz (1843-1921) showed that this is not so. Schwartz’s example was so
astonishing at the time that it became known as Schwartz’s paradox.
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10 The Quadrature of the Parabola. [3] One of Archimedes’ most remarkable
accomplishments was in determining the area of a parabolic segment. Let AV C
be a parabolic segment with vertex V and base AC. Archimedes then proceeds
to inscribe triangles. The first triangle is △AV C. In the two portions left over,
he inscribes two triangles, △ABV and △CDV ; in the four smaller portions left
over, he inscribes four triangles, and so on—completely filling the parabola with
triangles. Archimedes then calculated that the total areas of the triangles at each
stage was 1

4 the area of the triangles from the previous stage. Thus, after n stages,
the sum of the areas of all inscribed triangles is equal to

(

1 +
1

4
+ · · · +

1

4n

)

△AV C.

As n increases indefinitely, all triangles equal the parabolic segment. Hence, since
the sum of the “infinitely many” fractions is an infinite geometric series, we have
that the area of the parabolic segment is equal to

1

1 − 1
4

△AV C =
4

3
△AV C.

A

V

C

DB

Thus, the area of any parabolic segment is 4
3 the area of the inscribed triangle!

For example, to find the area of the segment formed by y = 2 −x2 and the x-axis,
we inscribe a triangle so that the base lies on the x-axis and one vertex is on
the y-axis (like in the picture above—imagine AC is the x-axis and the y-axis
goes through V ). Then the base of the triangle is the distance between the x-
intercepts of y = 2 − x2; the x-intercepts are −

√
2 and

√
2, so the base has length√

2 − (−
√

2) = 2
√

2. The height of the triangle is the y-intercept of y = 2 − x2;
this is 2. Therefore the area of the inscribed triangle is (1/2) · 2 · 2

√
2 = 2

√
2.

Thus, the area of the parabolic region is (4/3) · 2
√

2 = 8
√

2/3.

Without using calculus, find the area of the region between: 10a) y = 4 − x2 and
the x-axis; 10b) y = 10 − x2 and the x-axis; 10c) y = 16 − x2 and the x-axis.

11 Archimedes, an Approximating βαδασσ. [1.5] In the midst of his approxi-
mation for the value of π, Archimedes needed a value for

√
3 and he used

265

153
<

√
3 <

1351

780
.

How good is this as a decimal?
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12 You, an Approximating βαδασσ. [4] An interesting question raised in the
previous problem is how one would get such a sharp approximation for square
roots without benefit of a calculator. A very nice algorithm is the following.

To approximate
√
A, begin with an initial approximation of x0 (obtained by “eye-

balling it”). Then let the next approximation be

x1 =
x2

0 +A

2x0
,

then the next one is

x2 =
x2

1 +A

2x1

and generally, use the recursive definition

xn+1 =
x2

n +A

2xn
. (1)

12a) Assuming that the sequence of successive approximations converges to a limit
L, show that L =

√
A. (Hint: Take limits of both sides of Eq. (1) as n → ∞.)

12b) Now suppose we want to approximate
√

3 and we start with the rational
number x0 = 5/3 (this is reasonable since (5/3)2 = 25/9 ≈ 27/9 = 3). Apply
the recursion formula twice to approximate this square root.

12c) Notice anything? Do you think Archimedes was on to something?

12d) Using two iterations of this recursive procedure, approximate:
√

2 with x0 =
3/2;

√
5 with x0 = 2;

√
56 with x0 = 7.5;

√
90 with x0 = 9.5; and

√
2519

with x0 of your choice. (If these seem familiar, that’s because these are the
square roots you were asked to approximate in Problem 3 from Last-Minute
Problems #1.)

13 Broken Chord. [4] Islamic scholars have attributed to Archimedes the Theorem

of the Broken Chord, which says

If AB and BC make up a broken chord in a circle, where BC > AB,
and if M is the midpoint of arc ABC, the foot F of the perpendicular
from M on BC is the midpoint of the broken chord ABC.

Prove this theorem.

A

B

M

F
C
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14 Spherical Segment. [4.5] Archimedes reputedly considered volumes of certain
spherical parts, such as the following: Two planes, both parallel to the plane that
contains a great circle, intersect a sphere. The resulting “slice” of the sphere is
called a spherical segment of two bases. The volume of the segment is

V =
πh(3a2 + 3b2 + h2)

6

where a is the radius of the lower base, b is the radius of the upper base, and h is
the altitude between the two bases.

b

ah

14a) Show that the above formula is equivalent to the sum of a sphere of radius
h/2 and two circular cylinders whose altitudes are each h/2 and whose radii
are a and b.

14b) Find the formula for the volume of a spherical segment of one base by con-
sidering what happens in the above formula as b approaches zero.

14c) Find the formula for the volume of a hemisphere using the above formula.
(Hint: As b approaches zero, and as a approaches r, the radius of the sphere,
what happens to h?)

14d) If possible, derive the volume of a sphere from the above formula.

15 Archimedean “Formulas” in Geometric Disguise. [3] In his masterpiece
On the Sphere and Cylinder, Archimedes stated his results about spherical volume
and area by comparing his figures with such better-understood figures as cylinders
and cones. Assuming we know the modern formulas for the key properties of
cones and cylinders, translate the following statements into familiar, modern-day
formulas.

15a) “Any sphere is equal (by volume) to four times the cone which has its base
equal to the greatest circle in the sphere and its height equal to the radius
of the sphere.”

15b) “Every cylinder whose base is the greatest circle in a sphere and whose height
is equal to the diameter of the sphere is half again as large as the sphere.”

15c) “Every cylinder whose base is the greatest circle in a sphere and whose height
is equal to the diameter of the sphere has surface (together with its bases)
that is half again as large as the surface of the sphere.”
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16 The Quadrature of the Arbelos. [6] Let A, C, and B be three collinear
points, with C between A and B. Semicircles having AC, BC, and AB as diam-
eters are drawn on the same side of the line. The figure bounded by the three
semicircles is called an arbelos. The term “arbelos” means “shoemaker’s knife” in
Greek, and this term is applied to the figure which resembles the blade of a knife
used by ancient cobblers. Once again, it was Archimedes who investigated the
fascinating properties of this figure.

A C B

16a) At C, erect a perpendicular to AB that intersects semicircle AB at G. Let
the common external tangent to the two smaller semicircles touch these semi-
circles at T and W . You will prove that GC and TW are equal.

a1: Draw TW and connect the radii of the two smaller circles to TW . Then
construct a segment parallel to TW from the center of the smallest semi-
circle. This creates a right triangle. Find the sides of the right triangle
in terms of AC and BC.

a2: Show that TW is equal to the length of the longest leg of the right
triangle, and find a simplified expression for TW in terms of AC and
BC.

a3: Find an expression for GC in terms of AC and BC, and conclude that
TW = GC. (Hint: Use Problem 8c from Last-Minute Problems #3.)

16b) Prove that the area of the arbelos equals the area of the circle that has GC
as a diameter.

F X f
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