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Preface for the Fourth Edition

I would like to throttle the man who wrote this book.
— HermannWeyl

To throw yet another calculus book into the marketplace is a
laughable exercise indeed. Why bother? Aren’t there plenty of good
books from which one may learn calculus? So why another? The only
reason one has for writing a new book on an old subject is that it must
present some new viewpoint or some new reason for existence. Those
reasons are embodied in one simple statement: This book presents
calculus the way I think it should be taught to high school students.

I originally wrote this book because the existing calculus textbooks
a) are too big to lug around in your hands or in your backpack, b)
have too many exercises, c) try to do far too much to please hundreds
of different needs, and d) those books that are directed towards high
school are slaves to the Advanced Placement curriculum.”Advanced Placement” and

“AP” are registered trademarks
of the College Board, which is
not associated or affiliated with
the production of this book.

Although this is the fourth edition, my goals for the book remain
unchanged, and they still resonate today. This book is not the typical
1200-page calculus doorstop. That is because this book was written
with teaching and learning in mind. Each section was written as if I
was teaching in front of a class – nearly everything written is what I
would say to my students, write on the board, or have them discuss. As
such, there are no “supplemental” or “optional” sections: everything is
taught and all is (hopefully!) learned.

Many calculus books are huge, not only for including unused
content, but also for including vast numbers of unattempted problems.
There are simply too many exercises for a student to complete in one
year inmost calculus textbooks. In this book, every problem is attempted
by every student. Problems have been chosen carefully to be important,
relevant, and worthwhile. As a result, there are not many problems
at the end of a section. Should students need additional practice with
mastering the skills of, say, the chain rule, such material is easily
accessed elsewhere—in other books or on the internet—and as such I
felt it was not worthwhile to include buckets of drill exercises.

Proofs are an important aspect of this book. The study of calcu-
lus begins the transition between computation-driven mathematics to
proof-driven mathematics. Yet proofs are often neglected in the teach-
ing of high school calculus. The book is some attempt at rectifying that
situation. I have tried to present rigorous proofs without delving into
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the higher analysis of the real numbers. Where rigor is not possible,
or where such a proof would deliver more confusion than insight, I
present an inuitive argument based on assumptions of certain proper-
ties of the real numbers. As the student progresses through the book,
the rigor increases slightly. But in every case, the proofs are written
in an accessible way in order to give high school students practice at
thinking about proofs and reading proofs, as well as understanding the
logic behind a statement of a theorem.

Most calculus books that are geared towards high school students
are written with the goal of the student passing the AP exam. This is
not an indictment of College Board’s goals for calculus. Indeed, there
is much that is good about the focus on understanding, justifications,
and application. However, there is also much lacking: hyperbolic
functions, real uses of Euler’s method, other indeterminate cases for
l’Hôspital’s rule besides the 0/0 case, and trigonometric substitution,
among others. Students learning nothing but the topics listed in the
Course Description will do well on the Exam, but is the AP Exam the
main reason a high school student should learn calculus? I don’t think
so. I believe that the student should learn calculus well in order to learn
calculus, one of themost important intellectual endeavors of the human
race, and to apply calculus, one of the most important tools in scientific
application and prediction. The AP exam is extra; students who know
calculus well will, of course, do well on the AP exam. This book does
include every topic in the AP Calculus ABCourseDescription, for those
teachers or students who wish to learn calculus for the AP exam.

Finally, I wish to reiterate that this book was written for one need
and one need only: to present calculus to gifted high school students.
There is no other motivation for this book: it is not intended for “liberal
arts majors,” for “future math teachers,” or for “engineering majors.”
This book does not try to be all things to all instructors. It is simply
a concise textbook for gifted high school students—students who may
choose to become liberal arts majors, math teachers, or engineers.

Organization. Every topic in the AB course description is devel-
opedalongwith a few other topics to create a comprehensive single-year
high school calculus course. The following is a chapter-by-chapter sum-
mary of the book.

Chapter 1: Rate Equations. This is the most crucial chapter of
the book. Here, the students do number crunching to predict physical
phenomena based on the rate at which the phenomona occur. They
use Euler’s method extensively before it is made formulaic. This
sets up the students to understand how to work with and use rates
to make predictions. Students also must make decisions about the
validity of the data, determine constants used in exponential and
logistic growth, and judge the validity of their predictions. Euler’s
method is used throughout the first volume as an investigative tool. In
addition, problems in Section 1.4 set up the idea of Riemann sums and
foreshadow the Fundamental Theorem of Calculus.

Chapter 2: Rates and Derivatives. After dwelling on the nu-
merical and graphical, we introduce the algebraic as a way to make
our predictive abilities more precise. Following this is a traditional
approach to derivative rules, but with more of a focus on presenting
proofs of major theorems, and less of a focus on the details of lim-
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its. Applications of differentiation are deferred to Chapters 3 and 6,
although the relationship between position, velcity, and acceleration is
used throughout.

Chapter 3: Using the Derivative. This chapter starts with the
notion of the differential and then applies it to approximations, related
rates, and implicit differentiation. The Mean Value Theorem continues
the focus on proofs, and then we use derivatives to return to limits with
l’Hôpital’s Rule and limits involving infinity.

Chapter 4: Areas and Antiderivatives. Like the arrangement
in the first three chapters, we introduce the numerical and graphical
first (Sections 1 through 3) before the algebraic (Sections 4 and 5).
The sixth section of this short chapter wraps up the question of area
computations.

Chapter 5: The Integral as a Function. The Fundamental
Theorem of Calculus is stated and proved before students learn any
antiderivative rules (other than basic reversal of differentiation) so that
students don’t get the impression that the Fundamental Theorem is just
about antiderivatives. It is this chapter where the logarithmic function
(in terms of an integral) and the exponential function (in terms of the
inverse of the logarithm) are defined.

Chapter 6: Modeling Physical Phenomena. Here we find the
traditional applications of single-variable calculus. Most books separate
these applications so that they occur closer to the respective differen-
tiation or integration chapters; I feel that the applications are more
meaningful and relevant when presented after differentiation and inte-
gration have been introduced. Certainly, problems in position, velocity,
and acceleration are more realistic when one has both derivatives and
integrals at one’s disposal, as are other problems from physics (Sections
6.4 and 6.5). The treatment of volume of solids of revolution is delib-
erately slow-paced to give students time to become familiar with these
new methods.

Chapter 7: Differential Equations. Here, we take another
look at the situations in Chapter 1, but this time from the perspective of
having built a huge toolbox of more precise techniques.

Appendices. The appendices are split into three sections. The first
is a list of 40 Challenge Problems. They are difficult, and no answers
are provided. The second section is a list of formulas. Also included is
a blank unit circle diagram that students are encouraged to fill in. The
third section is an essay concerning being successful in a mathematics
class. It includes suggestions for studying, homework, asking questions
in class, getting extra help, and preparing for a test.

Problems and Exercises. Most sections have at least one “Ex-
ercise” in the text. These exercises are designed to be completed by
the student at that point in the lesson. They extend recent concepts,
foreshadow upcoming ideas, or are for practicing new skills. I use these
as classwork assignments, completed individually or in small groups.

One section common to each chapter is the section entitled “Prepa-
ration and Extension.” The Preparation problems are designed to
prepare students for a chapter test. The problems here are similar to
test questions that I write and are a good measure of howwell prepared
the student is for the test. At the beginning of each Preparation section
is a smattering of review problems as well. They are offered to help
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students retain previously learned concepts. The Extension problems
are meant to challenge the students by extending the concepts and
skills learned in that chapter. Groups of three or four students work
these problems together and they have a minimum of two weeks to
complete them. Very often we forget that mathematics is a actually a
group activity, and students should have opportunities to model real
mathematical problem-solving as practiced by mathematicians.

Changes from the Second Edition. For the third edition, the
entire text has been carefully revised. This includes the choice ofA teacher’s guide and solutions

manual for this new edition is
available from my website,
drchuckgarner.com, as well as
a student’s solutions manual.

problems. I retained the goals of the original edition while ensuring
this text is suitable for the new AP Exam Course Description. What
follows are the most notable changes.

A new section has been added to Chapter 1 concerning the rate
equations for an epidemiological model. Using the standard S-I-R
equations, we model the spread of measles. This section was included
in the preliminary version of the book, used in 2009-2010. However,
I removed it for publication because the technique used to solve the
differential equations was beyond the scope of the book (it still is).
Conversations with colleagues about the efficacy of using this material
as a first-day activity in calculus class, led me to change my mind.

The old Chapter 2 is split into two chapters, Chapters 2 and 3. A
great debt of gratitude goes to Mr. Bill “DM Ashura” Shillito, who
convinced me that an approach using differentials makes so many
things easier to explain. In seeing what differentials can do, I rewrote
the implicit differentiation section and pulled the related rate problems
from the old Chapter 5 (on applications), and included that in the new
Chapter 3. Bill had a wonderful idea!

I also split the old Chapter 3 on integrals into two chapters, Chapters
4 and 5. I also introduce the integral chapter with a section on finite
series so that problems concerning writing limits of Riemann sums as
definite integrals, and vice versa, could be included. With the new
focus on limits of Riemann sums, I felt it prudent to reinforce this by
deriving the definite integrals of 𝑥2 and 𝑥3 using this technique. As
a result, I no longer need Simpson’s rule to do this, and it has been
removed. A section on “properties of areas” is new: specific attention is
given to finding the area between curves which was lacking in previous
editions. I also relctnatly removed the section on hyperbolic functions
in order to stream-line the book.

The sections on approximating polynomials and physics problems
from the old Chapter 4 have been removed. I decided that the focus
should be on linear approximations at this stage. The “free fall” part of
the old physics section is retained; it is combined with the section on
position, velocity, and acceleration.

Two sections from the old Chapter 6 on differential equations
are removed: integration by partial fractions and logistic differential
equations. As these topics are not part of the AB Course Description,
many teachers using earlier editions of the book admitted that these
sections were usually skipped anyway.

At the end of each chapter is a page titled “At the End of theChapter,
You Should Be Able To. . . ”. This page acts as an outline of the topics
and skills students should have by the close of each chapter. It is one
thing to have a goal at the beginning of each section, or a summary
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of each section at the end of the section. However, students need to
develop the idea of a cumulative assessment, and they sometimes have
trouble preparing for such an assessment. This new feature of the book
should help students study for a test and to help focus their review on
any deficits they may have.

All the problem sets have been revised, reordered, or re-written.
There were review problems in each problem set, but these have been
removed and gathered together at the beginning of each “Preparation
and Extension” section.

Changes from the Third Edition. The fourth edition is different
from the third in two major aspects: size and design.Another difference is the

multitude of “marginal notes.”
These serve many purposes,
some of which may even be
related to calculus!

When I published the first edition, it was printed on 81
2 × 11-inch

paper. This allowed for awidemargin inwhich I could putmany graphs
and tables. However, it was just too big in length and width to be easily
carried by my students. (It was not very dense at less than 300 pages.)
The second edition and third editions were printed on 6× 9-inch paper.
This size did not allow for a wide margin, so the book was reformatted,
and the page count rose to 440. Many students appeciated the smaller
length and width – some could even carry it in a purse! However, I
knew that I could decrease the page count if I went baack to a bigger
size. Thus, I found a compromise at 7 × 10. This allowed for a wide
margin (like the first edition) and gave a smaller page count (at just a
little more than 300 pages).

The other significant change is color! I redrew every figure and
added some new ones, using color throughout. I always envisioned
the book printed in color, even with the first edition. However, color
printing at the time was too costly. Luckily the costs of color printing
have decreased enough that I think it is time to print the book I always
saw in my head!

History. In 2002, inspired by a Book of Exerciseswritten by calculus
teacher Sergio Stadler at the Marist School in Atlanta, I wrote my
own supplement to the calculus textbook my classes used that focused
on AP-style questions and problems, as well as some extra topics not
currently included in the AP curriclum. What I thought would be a
small project blossomed into a 250-page AP Calculus Problem Book.
About two-thirds of the problems were original, but I must confess that
the best problems I stole from various sources. The Problem Book was
self-published every school year which allowed me to make corrections“Self-published” at that time

meant that I made all the copies,
collated them, and punched
holes in the papers and ran the
comb bindings through myself!

and additions (or subtractions) easily. As the years went by, three
unforseen consequences arose from using the book.

First, I noticed that my students preferred the Problem Book to the
regular textbook. They seemed more willing to do the problems and
carry it around as opposed to the big textbook. This led to eventually
dropping the published textbook altogether, and using the Problem
Book as the sole “text.”

Second, I realized that I could put everything my students needed
into one place. In future editions, I included the syllabus, labs, old
tests, challenge problems, study tips, group projects, practice exams,
and other items. This allowed the students to simply keep up with one
book where everything was located instead of keeping up with multiple
handouts. And, by including everything in one book I didn’t visit the
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copymachine throughout the school year to make all the handouts and
worksheets.

The third consequence was a positive influence on how I teach. I
began to include problems specifically designed to be worked in pairs
or groups, so that more collaborative learning was taking place. It also
allowed me the flexibility to assign homework problems on a class-by-
class basis. I included group problem sets for those occasions when a
substitute was necessary, so no day was ever wasted. These features
exist in the present work—the “Exercises” are designed to be worked
in class by pairs of students, and the “Extension Problems” are used as
problem sets for groups of three or four students to tackle over a period
of weeks.

But, students missed the examples of a textbook, and I grew com-
placent with teaching calculus the same way each year. So I started to
wonder howbest to shake things up. With the announcement thatGeor-
giawasmoving to an integratedmathematics curriculum, Iwas charged
with re-aligning the “calculus-and-beyond” classes at my school. That
meant taking another look at the post-calulus courses: Multivariable
Calculus, History ofMathematics, andDiscreteMathematics. The latterThe content of Discrete

Mathematics did not change but
the name did. It was relaunched
as “Advanced Finite
Mathematics”. We also added a
course in introductory
operations research called
“Mathematics of Industry and
Government”.

two changed little, and I still teach them both. Material from linear
algebra and multivariable calculus were always approached together
in a single year, and I wanted to include differential equations to a
greater extent than in the past. So I took this opportunity to rethink my
approach to calculus as a whole, and devisedmy own two-year calculus
curriculum that would encompass everything required for students to
do well on standardized tests, other single-variable calculus topics, as
well as some differential equations, linear algebra, and multivariable
calculus. Thankfully, my administration encouraged my ideas and was
completely supportive.

Technicalities. I began work on the book in June 2007. Besides
creating something for my classes, I also approached this as an exercise
in LATEX. I started using LATEX in late 2003, so I was familiar with the
program and knew the possibilities. I started this book on a WindowsThere was a learning curve with

LATEX: the code for the Problem
Book is quite rough!

machine using the fantastic MikTEX distributionwith the TEXnicCenter
editor, but I soonmigrated to aMacBookwhere I nowuse thewonderful
MacTEX and the TEXShop editor.

When I first learned how to draw figures in LATEX, I used the first
package I found, which was TEXdraw. TEXdraw generates PostScript
drawings and was suitable for the limited pictures I needed at the
time. However, as this book progressed, I needed more than TEXdraw
was capable of doing, and I wanted color. I needed another PostScript-
output package. Hence, I started using the PSTricks bundle of packages.
The resulting figures in this book are all PSTricks code.

Chuck Garner
Conyers, Georgia

June 2021
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Chapter 1

RATE EQUATIONS

Have you ever heard someone—maybe you—say any of the fol-
lowing?

“The population is growing more slowly.”

“The plane is landing smoothly.”

“The economy is picking up.”

“The tax rate is constant.”

“The unemployment rate is decreasing.”

“Stock prices have peaked.”

What do these statements have in common? They are all describing
change. What do these statements have to do with calculus? Calculus
is the mathematics of change.

We begin our journey by discussing statements of this type. Each
of the statements above describes a rate of change, a fundamental
concept in mathematics and science. In this chapter we will investigate
these rates through numerical and graphical analysis. Rateswill usually
be described by rate equations.

To be a bit more precise about it, rate equations are used to describe,
predict, and model real-world phenomena, such as the population of
Georgia, the growth of yeast bacteria, and the disposal of nuclear waste.

Wewillmodel these situations, introduce some usefulmathematical
tools for investigating these models, and test our predictions against
real-world data. In later chapters, we will develop algebraic and
analytical methods for investigating rate equations.
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1.1 Water Flowing Into a Tank

In the mathematics I can report no deficience, except that it be that men do not sufficiently understand the excellent use of
the pure mathematics, in that they do remedy and cure many defects in the wit and faculties intellectual. For if the wit be
too dull, they sharpen it; if too wandering, they fix it; if too inherent in the sense, they abstract it. So that as tennis is a game
of no use in itself, but of great use in respect that it maketh a quick eye and a body ready to put itself into all postures; so in
the mathematics, that use which is collateral and intervenient is no less worthy than that which is principal and intended.

— Roger Bacon

Before we begin with rate equations, we should begin simply with
rates. Consider the three situations below, each with a graph plotting
the time it takes to fill a tank with water, versus the volume of water in
the tank.

Situation I. Water is flowing into a tank that is initially empty at
a constant rate of 40 gallons per minute for 6 minutes. Since the rate
is constant, we know that there must be 6 × 40 = 240 gallons in the
tank. The graph is therefore a line with endpoints (0, 0) and (6, 240).
The slope of the line is 40, the same as the rate. This gives us our first
interpretation of a rate: slope.

Situation II. The tap, closed at the beginning, is gradually opened
over 6 minutes, so that at 6 minutes the tank contains 200 gallons.

Here, the graph is concave up, meaning that the rate of water flow
increases. The important question here is this: What is the average rate
of water flow over the 6-minute interval? The answer is the slope of the
line that connects the endpoints (0, 0) and (6, 200). Thus, the average
rate of change is 200

6 ≈ 33.33 gallons per minute.
Situation III. The tap, opened so that water flows at a rate of 40

gallons per minute, is gradually closed, so that at 6 minutes the tank
contains 160 gallons. The graph is concave down, meaning that the
rate of water flow decreases. The average rate of change is 160

6 ≈ 26.667
gallons per minute.
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Situation III

Figure 1.1 – Three different situations for water flowing into a tank

The dashed lines in the graphs above connect the endpoints over
which we compute the average rate of change. Such a line is called a
secant line.
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Exercise 1.1.1 At time 𝑡 = 0, water begins to flow from a tap into an empty
tank at the rate of 40 gallons per minute. This flow rate is held constant for
2 minutes, then the tap is gradually closed until at 𝑡 = 4 the flow rate is 5
gallons per minute. This new rate is held constant for the final 2 minutes, so
that at time 𝑡 = 6, the tank contains 120 gallons.

(a) Draw a graph of the volume of water in the tank over the first 6minutes.

(b) What is the average rate of flow over the interval from 2 to 4 minutes?
Draw a secant line on your graph that conveys this information.

(c) If we wanted to put the entire 120 gallons into the tank at a constant
rate, what would that constant rate be?

(d) Now suppose that a pump is started at 𝑡 = 2, and, for the next 4
minutes, pumps water out of the tank at a constant rate of 15 gallons
per minute. The graph you drew in part (a) now represents the total
amount of water flowing into the tank at time 𝑡. On the same axes as
your volume graph, draw the graph that represents the total amount of
water pumped out at time 𝑡. How do you now intepret the total amount
of water at time 𝑡?

(e) What is the total amount of water in the tank at time 𝑡 = 6?

(f) On your graph from part (e), show how to find the point at which the
water level in the tank is a maximum.

(g) What is the flow rate into the tank at the point found in part (f)?

Let us introduce some convenient mathematical shorthand for the
rate of change. Take Situation I from the previous page. If we let 𝑉
represent the volume of water in the tank, then the rate at which water
flows into the tank will be denoted by 𝑉 ′. (The symbol ′ is a prime
mark so that 𝑉 ′ is read “𝑉 prime.”) For instance, in Situation I, we
have 𝑉 ′ = 40.

Notice that in Situation II and Situation III, the rate is not constant,
and so 𝑉 ′ cannot be expressed as easily as in Situation I. One of
the questions that calculus helps us answer is that of finding and
interpreting expressions for such nonconstant rates. In the next section,
we will develop one such technique.The material in this section and

the exercise is adapted from
Taylor (1992). Exercise 1.1.2 Referring to the tank in Exercise 1.1.1, suppose the pump

does not operate, so that water is only flowing into the tank. Find:

(a) the exact time 𝑡 = 𝑘 for which the average flow rate into the tank over
the first 𝑘 minutes is 25;

(b) the exact time 𝑡 = 𝑚 for which the average flow rate into the tank over
the interval from𝑚minutes to 6 minutes is 15;

(c) a time interval from 𝑝 to 𝑝 + 4 minutes over which the average flow
rate is the same as the average flow rate over the entire 6 minutes.

Problems for Section 1.1

1 Illustrate the results in Exercise 1.1.2 using secant
lines on the graph.

2 Again referring to the tank in the exercise, now
suppose that the pump does operate. If the pump
continues past 6 minutes operating at 15 gallons

per minute, and water continues past 6 minutes
flowing in at 5 gallons per minute, then at what
time will the tank be empty?

3 A tank is being filled at a variable rate. The only
thing known is that between 1 and 2 minutes, the
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average inflow rate is 18 gallons per minute, and
the amount of water in the tank at 2 minutes is 42
gallons. What is your best estimate for the amount
of water in the tank at 2.5 minutes?

4 A tank is being filled at a variable rate. The only
thing known is that between 1 and 2 minutes, the
average inflow rate is 18 gallons per minute, and
the amount of water in the tank at 2 minutes is 36
gallons. What is your best estimate for the amount
of water in the tank at 2.5 minutes?

5 A tank has 20 gallons of water in it, then a tap is
opened and water flows into the tank. From 0 to
3 seconds, the average flow rate is 6 gallons per
second. From 3 to 5 seconds, the average flow rate

is 15 gallons per second. How many gallons of
water are there in the tank at 5 seconds?

6 Suppose the equation of volume of water in a
tank at time 𝑡 for the first 10 seconds is given
by 𝑉 (𝑡) = 0.3𝑡2. Find the average inflow rate over
(a) the first 5 seconds; (b) seconds 2 to 5; (c)
seconds 4 to 5; (d) seconds 4.5 to 5; (e) seconds
4.9 to 5. As the time interval gets shorter, to what
value does the average inflow rate approach?

7 Suppose the volume of water that is flowing out of a
full tank is given by 𝑉 (𝑡) = 1024 − 0.25𝑡3. The time
at which the tank is empty is when 𝑡 = 𝑐. Find the
value of 𝑐, then use it to find the average outflow
rate over the interval from 𝑐 − 1 to 𝑐 seconds.

1.2 Population Explosion

In the company of friends, writers can discuss their books, economists the state of the economy, lawyers their latest cases,
and businessmen their latest acquisitions, but mathematicians cannot discuss their mathematics at all. And the more

profound their work, the less understandable it is.
— Alfred Adler

Thomas Malthus wrote in an essay in 1798 that the growth of theThomas Malthus (1766-1834)
was an English economist. His
essay was titled “An Essay on the
Principle of Population.”

human population is very different from that of the growth of the food
supply. He concluded that the human population would grow so fast
that famine would be a global epidemic. Malthus, in fact, referred to a
rate equation in his essay that simply says that the rate of population
growth is proportional to the population. (In simpler terms, this means
that the greater the population, the faster the rate of growth.)

Let us consider his statement again with a bit of mathematical
symbolism. We let 𝑃 represent the population; that is, the number
of people. Since the growth of that population is related to 𝑃, let us
denote the rate of growth of that population by 𝑃′. HenceMalthus’ rate
equation becomes the proportion

𝑃′ = 𝑘𝑃

where the real number 𝑘 is called the constant of proportionality.
We will now use Malthus’ equation to predict the population of

the state of Georgia in the year 2030. Table 1.1 lists the population of
the state of Georgia according to U. S. Census information for the years
1900 to 2010 in 10-year intervals.

The first obstacle we face is how to find the constant of proportion-
ality. We cannot find it exactly, but we can approximate it using the
data in the table. Notice that if we solve Malthus’ equation for 𝑘 we get

𝑘 =
𝑃′

𝑃
.

So we need only to divide values of 𝑃′ by 𝑃 to find 𝑘. But how do we
find values of 𝑃′? We use the average rate of change in the population
over every 10-year interval. This means we treat the years as single data
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points, not as representing 10-year intervals. Thus, in the following
computations, the years have been divided by 10 so they act as single
data points. For instance, for the years 1900 to 1910, we have

Year Population
(millions)

1900 2.216
1910 2.609
1920 2.896
1930 2.909
1940 3.124
1950 3.445
1960 3.943
1970 4.590
1980 5.463
1990 6.478
2000 8.186
2010 9.688

Table 1.1 – Population of
the state of Georgia,
rounded to the nearest
thousand. Data from the
U.S. Census Bureau, 2013.
(quickfacts.census.gov/
qfd/states/13000.html).

𝑃′ ≈
2.609 − 2.216
191 − 190

=
0.393
1

= 0.393.

Therefore,
𝑘 =

𝑃′

𝑃
≈
0.393
2.609

= 0.151.

Notice that we have rounded to the nearest thousandth which is
appropriate for this estimation; however, more decimals places may be
necessary in other computations. Also, we have not used the population
figures inmillions, but have treated the figures as if they were decimals.
This will cause no problem, as long as we remember that our predicted
answers are in millions. Most interestingly, we somewhat arbitrarily
assumed 𝑃 was the population in 1910 in the final calculation above.
There is no mathematically valid reason to choose the 1910 population
rather than the 1900 population. But we can offset this randomness by:
finding the slope between the years 1910 and 1920; dividing again by
the 1910 value; and taking the average of this with the previous result.
This gives an approximate measure of the rate of change during the
year 1910, rather than between 1900 and 1910, or between 1910 and
1920.

The slope between 1910 and 1920 is

𝑃′ ≈
2.896 − 2.609
192 − 191

= 0.287;

the 𝑘-value is
𝑘 =

𝑃′

𝑃
≈
0.287
2.609

= 0.110.

Thus, the average of our two 𝑘-values at the year 1910 is
0.151 + 0.11

2
= 0.1305.

We have used four decimal
places rather than the three we
used before in order to better
compare this 𝑘-value with later
results.

Mathematically, we have computed what is called the symmetric
difference around the point (1910, 2.609). The symmetric difference
is slope “around” a point, using 𝑥-values (the years in this case) that
are spaced the same distance apart on either side of the point. Since
the years are always 10 years apart, our “averaging” the two 𝑘-values
is equivalent to finding the slope between the points (1900, 2.216) and
(1920, 2.896), then dividing by the population at 1910 (again treating
the years as single data points):

2.896 − 2.216
192 − 190

=
0.680
2

= 0.340,

then
𝑘 ≈

0.34
2.609

= 0.1303.

Exercise 1.2.1 What are the units of measure for 𝑃′?
Exercise 1.2.2 Create a table for the years 1910 to 2000 in 10-year intervals,
and compute the approximate value of 𝑘 for each year. Use the 𝑘-value of
0.1303 for the year 1910. Why should there be no entry for the year 2010?



6 rate equations Ch. 1

Exercise 1.2.3 Malthus’ equation only admits one value of 𝑘. What is the
best value we should adopt for our model? Justify your methods and reasons
for deciding upon your value of 𝑘. Would the value 𝑘 = 0.1316 be appropriate?
Can you determine what computations led to that value?

Let us assume 𝑘 = 0.1316. Then Malthus’ equation for the pop-
ulation of Georgia is 𝑃′ = 0.1316𝑃. This equation describes a rate of
change; that is, this equation tells us how much to add (𝑃′) to the
present value (𝑃 in 1900) to get the next value (𝑃 in 1910).

Year Actual Estimated
(millions) (millions)

1910 2.609 2.508
1920 2.896 2.838
1930 2.909 3.211
1940 3.124 3.634
1950 3.445 4.112
1960 3.943 4.653
1970 4.590 5.265
1980 5.463 5.958
1990 6.478 6.742
2000 8.186 7.630
2010 9.688 8.634

Table 1.2 – Actual and modeled
population of Georgia.

We have that the change in population is 0.1316 times the
population. Hence, if the population in 1900 is 2.216million,
we can approximate the population in 1910 by computing

0.1316 × 2.216 = 0.292

and then adding that to the population in 1900:

2.216 + 0.292 = 2.508 million.

To approximate the population in 1920, we repeat the pro-
cess, but this time using the population in 1910.

Note that the calculated population for 1910 does not
agree with the given population in 1910. In fact, Table 1.2
gives the actual population and the population as determined
by the model.

None of the estimated and actual numbers agree! But
that’s to be expected. After all, Malthus’ equation is only
a model of a real-world situation. This data is still useful,

however, because one can readily approximate the answer to the
original question: What will be the population of Georgia in the year
2030?

Notice that we cannot use the population in 2020 since we do not
have that data available. Hence, we must approximate the population
in 2020, and then use that approximation to estimate the population in
2030.

We compute:

(9.688 × 0.1316) + 9.688 = 10.963 million in 2020, and (1.1)
(10.963 × 0.1316) + 10.963 = 12.406 million in 2030. (1.2)

We pause briefly to clarify some rate concepts. Earlier, we used the
symmetric difference to compute a rate of change during the year 1910.
In effect, we have estimated the instantaneous rate of change of the
population in 1910. The instantaneous rate of change is the concept
described by a given rate equation.

For instance, if we are given the rate equation 𝑃′ = 0.2𝑃, where
𝑃 is a population, then given any value of 𝑃 we can compute the
instantaneous rate of change at that value of 𝑃. Notice that this is not an
average rate of change, but the change exactly at the given value of 𝑃.

Hence, we can safely talk about the the change at a point, instead of
the change around a point.
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Problems for Section 1.2

1 Notice that the population of Georgia rises dramat-
ically in the second half of the 20th century. Let
us compute a new value of 𝑘 by averaging the five
intermediate 𝑘-values in your table from 1960 to
2000. Use this new 𝑘 to make a new prediction of
the population of Georgia in 2030. Is this a better
prediction than 12.239 million? How do you know?

2 If the more recent data is more relevant, then the
newest data should be the best! Compute the slope
between the data points for the years 2000 and 2010,
and let this be the value of 𝑃′ so that the value of 𝑘
can be found. Make another prediction of the pop-
ulation in 2030. Is this a better prediction? Justify
your answer.

3 The Government of the State of Georgia projects a
population in Georgia of 12.189 million in 2020 and
14.688 million in 2030. Experiment with your cal-
culator to determine a value of 𝑘 that could arrive
at these predictions.

4 Is it possible to predict the population of Georgia
in the year 2025? Either explain why it cannot be
done, or give a method for doing so.

5 Below is the population data for Gwinnett County,
Georgia. Find an appropriate value of 𝑘 for
Malthus’ equation thatmodels the growth of Gwin-

nett County. Is the value of 𝑘 for Gwinnett County
larger or smaller than the value of 𝑘 for the state of
Georgia? What does this imply about the growth
of Gwinnett County? Predict the population of
Gwinnett County in the year 2030.

6 Either by hand or with a calculator, plot the popula-
tion data for Gwinnett County shown below. (You
may want to convert the years to a more resonable
scale; for instance, 1940 to 0, 1950 to 1, etc.) What
curve does the data resemble? Malthus’ equation
is more commonly referred to as the exponential
growth equation—does this make sense based on
the data?

Population of Gwinnett County

Year Population
(thousands)

1940 29.1
1950 32.3
1960 43.5
1970 72.3
1980 166.9
1990 352.9
2000 588.4
2010 805.3

1.3 Constrained Growth

Our population and our use of the finite resources of planet Earth are growing exponentially, along with our technical
ability to change the environment for good or ill.

— Stephen Hawking

The equation in Section 1.2 is not the best model to use for popula-
tion. As Malthus himself pointed out, the food supply will not support
the growth of the human population. So what happens when the food
supply runs out? The resources will not be able to support unlimited
population growth, and the growth rate will slow to a crawl, or “level
off.” Amodel to account for this type of constrained growth was first
introduced by Pierre-FrancoisVerhulst (1804-1849), but it was not until
Swedish biologist TorCarlsonused real data to develop amathematiocal
model in 1913 that constrained growth was taken seriously.

How can Malthus’ equation be modified to produce a new con-
strained growth rate equation? Since the population 𝑃 must level off,
this implies that the rate of population growth𝑃′must decrease towards
zero. There must also be a maximum sustainable population; let us
call this maximum sustainable population 𝑀. (𝑀 is also called the
carrying capacity of the population.) The closer 𝑃 is to𝑀, the closer
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the Chain Rules.

𝑦 = 𝑥2 arctan(3𝑥 − 1)
𝑑𝑦

𝑑𝑥
= 2𝑥 · arctan(3𝑥 − 1) + 𝑥2 ·

3
9𝑥2 − 6𝑥 + 2

= 2𝑥 arctan(3𝑥 − 1) +
3𝑥2

9𝑥2 − 6𝑥 + 2
,

where we have the 3 produced by the Chain Rule. �

Example 3.4.9
We find the derivative of 𝑦 = 7 arcsec

(
𝑥2

)
. We have

𝑦 = 7 arcsec
(
𝑥2

)
𝑑𝑦

𝑑𝑥
= 7 ·

1

𝑥2


√(

𝑥2
)2

− 1
· (2𝑥) =

14𝑥

𝑥2

√𝑥4 − 1
=

14
|𝑥 |

√
𝑥4 − 1

as the derivative. �

Problems for Section 3.4

Evaluate each of the following expressions. Do not
use a calculator.

1 sin−1
(
−
√
3
2

)

2 tan−1
(
−
√
3
)

3 sin(arctan(1))

4 tan(sec−1 (2))

5 sin(arcsin(0.3))

6 arcsin(sin(𝜋))

7 arccos
(
cos

(
−𝜋

4
) )

Find the derivatives of the following functions.

8 𝑦 = sec−1 (5𝑥)

9 𝑦 = cos−1 (2𝑥 − 3)

10 𝑦 = arctan(2𝑥 − 3)

11 𝑦 = arcsec
(
3𝑥2

)

12 𝑦 = tan−1
(
3
𝑥

)

13 𝑦 = arccos
(
1
𝑥

)

14 𝑦 = 2 sin−1
√
1 − 2𝑥2

15 𝑦 = arcsin(1 − 𝑥)

16 Which of the following are undefined?

arccos(1.5), arcsec(1.5), arctan(1.5),
arcsec(0.3), arcsin(2.4).

17 This problem is an application of the ExtremeValue
Theorem.

(a) Since 𝑦 = arcsin(𝑥) is defined only on [−1, 1],
we can find the extrema by examining the
graph. What are the extreme points?

(b) What are the extreme points of 𝑦 = arcsec(𝑥)?
Are they local or global?

(c) What are the extreme points of 𝑦 = arctan(𝑥)?

18 Find the derivative of 𝑦 = 4 arctan(𝑥). What is the
equation of the tangent line when 𝑥 = 1?

3.5 More Value of Theorems

Don’t just read it; fight it! Ask your own questions, look for your own examples, discover your own proofs. Is the hypothesis
necessary? Is the converse true? What happens in the classical special case? What about the degenerate cases? Where does

the proof use the hypothesis?
— Jacques Hadamard

We know that a function such as 𝑓(𝑥) = 7 has a derivative of zero.
We begin this section with a Lemma concerning this fact.
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LEMMA 3.A Let 𝑓(𝑥) be differentiable on (𝑎 , 𝑏). The function 𝑓(𝑥) is
constant on [𝑎 , 𝑏] if and only if 𝑓′(𝑥) = 0.

Proof. Assume 𝑓(𝑥) is constant on [𝑎 , 𝑏]. Then 𝑓(𝑥) = 𝑟 for all 𝑥 in
[𝑎 , 𝑏], where 𝑟 is some real number. Hence,

𝑓′(𝑥) = lim
Δ𝑥→0

𝑓(𝑥 + Δ𝑥) − 𝑓(𝑥)

Δ𝑥
= lim

Δ𝑥→0

𝑟 − 𝑟

Δ𝑥
= 0.

Next, assume 𝑓′(𝑥) = 0 on (𝑎 , 𝑏). Then 𝑓 is continuous on [𝑎 , 𝑏],
and we have

0 = lim
Δ𝑥→0

𝑓(𝑥 + Δ𝑥) − 𝑓(𝑥)

Δ𝑥

0 =
𝑓(𝑥 + Δ𝑥) − 𝑓(𝑥)

Δ𝑥
0 = 𝑓(𝑥 + Δ𝑥) − 𝑓(𝑥)

𝑓(𝑥) = 𝑓(𝑥 + Δ𝑥).

Since 𝑥 is an arbitrary point in (𝑎 , 𝑏), we have that all 𝑦-values are the
same; hence, 𝑓must be constant on [𝑎 , 𝑏]. �

Exercise 3.5.1 Draw coordinate axes and pick any two points on your graph
that have the same 𝑦-values and different 𝑥-values. Draw any differentiable
function betweeen your 2 points (make it as “curvy” as you wish, but make
sure it meets the qualifications). Does your function have a horizontal tangent
somewhere between your two points?

You may have difficulty drawing a differentiable function that
doesn’t have a horizontal tangent in the above exercise—simply because
it is not possible to do so! The proof of the theorem below explains why.The proof is adapted from

Apostol (1967).

THEOREM 3.B (Rolle’s Theorem) Let 𝑓(𝑥) be differentiable on (𝑎 , 𝑏)
and continuous on [𝑎 , 𝑏] where 𝑓(𝑎) = 𝑓(𝑏). Then there is some point 𝑐
in (𝑎 , 𝑏) such that 𝑓′(𝑐) = 0.

Proof. We will use the method of proof by contradiction. AssumeIn a proof by contradiction, we
assume the opposite of the
conclusion and show that this
leads to a contradiction of
known facts. The result is that
the opposite of the conclusion
must be false, and so the
conclusion must be true.

𝑓′(𝑥) ≠ 0 for every 𝑥 in (𝑎 , 𝑏).
By the Extreme Value Theorem, 𝑓 has a global maximum 𝑀 and

a global minimum 𝑚. Fermat’s Test indicates that neither extreme
value can be given by an 𝑥-value within (𝑎 , 𝑏) or else 𝑓′ is zero there;
hence, both extrema occur at the endpoints of the interval. But since
𝑓(𝑎) = 𝑓(𝑏), we have 𝑀 = 𝑚 and thus 𝑓 is constant on (𝑎 , 𝑏). By
Lemma 3.A, this implies 𝑓′(𝑥) = 0 everywhere on (𝑎 , 𝑏); thus, we
have a contradiction. Hence, there is at least one 𝑐 in (𝑎 , 𝑏) such that
𝑓′(𝑐) = 0. �

Example 3.5.2
Consider the function 𝑓(𝑥) = 𝑥4 − 2𝑥2 on the interval [−2, 2]. Since 𝑓(−2) =
𝑓(2) = 8, and 𝑓 is differentiable and continuous, we may apply Rolle’s
Theorem. The theorem tells us that there is a point in the interval [−2, 2] where
the derivative of 𝑓 is zero. We now find that point.

Since 𝑓′ (𝑥) = 4𝑥3 − 4𝑥 = 4𝑥
(
𝑥2 − 1

)
and we know that there is some point
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where 𝑓′ = 0, we set the derivative equal to zero and solve: 4𝑥
(
𝑥2 − 1

)
= 0

gives solutions 𝑥 = −1, 𝑥 = 0, and 𝑥 = 1. All of these are in the interval [−2, 2]
and so all of these points satisfy the conclusion of Rolle’s Theorem.

(Note that Rolle’s Theorem simply says that there is some point in the
interval where the derivative is zero; there could be multiple points where the
derivative is zero, as this example illustrates.) �

Over any interval, must it be true that the slope between the
endpoints of the interval is equal to the derivative of a differentiable
function within the interval? Suprisingly, this answer is yes, and it is
due to the Mean Value Theorem.The Mean Value Theorem is

another one of those Big
Important Theorems! THEOREM 3.C (The Mean Value Theorem) Let 𝑓 be a function con-

tinuous on [𝑎 , 𝑏] and differentiable on (𝑎 , 𝑏). Then, for some 𝑐 in
(𝑎 , 𝑏),

𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎
= 𝑓′(𝑐)

provided 𝑏 ≠ 𝑎 .

Proof. We note that the quantity

𝑘 =
𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎

is constant since it depends only on the real constants 𝑎 and 𝑏. We
introduce the function 𝑃(𝑥) = 𝑓(𝑥) − 𝑘𝑥 on [𝑎 , 𝑏], where 𝑘 is defined
above. Then we have

𝑃(𝑥) = 𝑓(𝑥)−𝑘𝑥 = 𝑓(𝑥)−
𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎
𝑥 =

𝑓(𝑥) [𝑏 − 𝑎] − 𝑥[𝑓(𝑏) − 𝑓(𝑎)]

𝑏 − 𝑎

so that

𝑃(𝑎) = 𝑓(𝑎) − 𝑘𝑎 =
𝑓(𝑎) [𝑏 − 𝑎] − 𝑎 [𝑓(𝑏) − 𝑓(𝑎)]

𝑏 − 𝑎
=
𝑏𝑓(𝑎) − 𝑎𝑓(𝑏)

𝑏 − 𝑎

and

𝑃(𝑏) = 𝑓(𝑏) − 𝑘𝑏 =
𝑓(𝑏) [𝑏 − 𝑎] − 𝑏[𝑓(𝑏) − 𝑓(𝑎)]

𝑏 − 𝑎
=
−𝑎𝑓(𝑏) + 𝑏𝑓(𝑎)

𝑏 − 𝑎

implying that 𝑃(𝑎) = 𝑃(𝑏). Hence, we may apply Rolle’s Theorem.
Therefore, there exists a point 𝑐 in (𝑎 , 𝑏) such that 𝑃′(𝑐) = 0. We have

𝑃′(𝑐) = 𝑓′(𝑐) − 𝑘 = 0
𝑓′(𝑐) = 𝑘

𝑓′(𝑐) =
𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎

which proves the theorem. �Some consider Rolle’s Theorem
as a special case of the MVT. But
it isn’t really: did you notice we
needed Rolle to prove the MVT?

This is called the Mean Value Theorem for a reason. Geometrically,
we recognize the left side as the slope of the secant line between the
points (𝑎 ,𝑓(𝑎)) and (𝑏,𝑓(𝑏)). The theorem then says that the slope of
the secant must be equal to the slope of the tangent to the curve at a
point somewhere between 𝑥 = 𝑎 and 𝑥 = 𝑏. See Figure 3.6.
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𝑥

𝑦

𝑎 𝑏𝑐

�

�

�

Figure 3.6 – Demonstrating the Mean Value Theorem. The secant line over
[𝑎 , 𝑏] has the same slope as the tangent line at 𝑥 = 𝑐

This should make some intuitive sense: If you averaged 50 mph on
a trip in your car, then there would be at least one instant during your
trip when your speed was exactly 50 mph. In other words, the average
rate of change is equal to the instantaneous rate of change at some
point.

Notice that theMeanValue Theorem is another “existence theorem”
– we know a point 𝑐 exists, but we are given no method to find it.
Fortunately, finding the value of 𝑐 is not that difficult!Well, it depdends on how

complicated the derivative is. . .

Example 3.5.3
Let us find the appropriate value of 𝑐 given by the Mean Value Theorem for the
function 𝑓(𝑥) = 4𝑥2 − 𝑥 − 6 on [1, 3].

First, we compute the slope of the secant:

𝑓(3) − 𝑓(1)
3 − 1

=
27 + 3
2

= 15.

Next, we find that 𝑓′(𝑥) = 8𝑥 − 1. Thus we take the secant slope (15), set it
equal to the tangent slope (8𝑥− 1) and solve to get 8𝑥− 1 = 15, or 𝑥 = 2. Thus, 2
is the value of 𝑐 guaranteed to exist according to the Mean Value Theorem. �

Exercise 3.5.4 Find the value of 𝑐 guaranteed to exist by the Mean Value
Theorem for the function 𝑓(𝑥) = 𝑥 + cos(𝑥) over the interval

[
0, 𝜋2

]
.

Exercise 3.5.5 Let 𝑎 be a positive real number. Explain why theMean Value
Theorem cannot be used on the function 𝑔(𝑥) = 3√𝑥 over the interval [−𝑎 , 𝑎].

The Mean Value Theorem may be expressed in a different form.
Consider multiplying both sides of

𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎
= 𝑓′(𝑐)

by 𝑏 − 𝑎 . Then we may write

𝑓(𝑏) − 𝑓(𝑎) = 𝑓′(𝑐) (𝑏 − 𝑎).

Now add 𝑓(𝑎) to both sides to get

𝑓(𝑏) = 𝑓(𝑎) + 𝑓′(𝑐) (𝑏 − 𝑎).

Since 𝑏 − 𝑎 is the change in 𝑥-values, and 𝑓′(𝑐) is the slope, we have yet
again an expression for a tangent line.
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Problems for Section 3.5

1 Explain why the Mean Value Theorem does not
apply to the function 𝑦 = |𝑥 | on any interval that
includes zero.

In the following, verify the three conditions required
by Rolle’s Theorem and then find a suitable number 𝑐
guaranteed to exist by Rolle’s Theorem.

2 𝑓(𝑥) = 2𝑥2 − 11𝑥 + 15 on
[ 5
2 , 3

]
3 𝑔(𝑥) = 𝑥3 + 5𝑥2 − 𝑥 − 5 on [−5,−1]
4 𝑝(𝑥) = 4𝑥4/3 − 6𝑥1/3 on [0, 6]

5 𝑘(𝑥) =
𝑥2 − 4
𝑥2 + 4

on [−2, 2]

In the following problems, verify the two conditions
required by the Mean Value Theorem and then find
a suitable number 𝑐 guaranteed to exist by the Mean
Value Theorem.

6 𝑓(𝑥) = 4𝑥2 − 𝑥 − 6 on [0, 2]

7 𝑔(𝑥) =
𝑥 − 1
𝑥 + 2

on [0, 2]

8 𝑝(𝑥) = 3𝑥2/3 − 2𝑥 on [0, 1]
9 𝑘(𝑥) = 𝑥4 − 3𝑥 on [1, 3]
10 The function

𝑓(𝑥) =

{
𝑥 0 ≤ 𝑥 < 1
0 𝑥 = 1

is zero at 𝑥 = 0 and 𝑥 = 1, and differentiable on
(0, 1), but its derivative on (0, 1) is never zero.
Doesn’t this contradict Rolle’s Theorem?

(Finney et al., 2001, p. 261)

11 Define a function 𝑓 as follows:

𝑓(𝑥) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3 − 𝑥2

2
𝑥 ≤ 1

1
𝑥

𝑥 ≥ 1.

(a) Sketch the graph of 𝑓(𝑥) in the interval [0, 2].

(b) Show that 𝑓 satisfies the conditions required
by the Mean Value Theorem over the interval
[0, 2], and determine the values of 𝑐 guaran-
teed to exist by the Mean Value Theorem.

(Apostol, 1967, p. 186)

12 A trucker was cited for speeding on a toll road with
speed limit 70 mph. He argued to the judge that
he wasn’t speeding. He handed in his ticket from a
toll booth showing that in 3 hours he had covered
219 miles on the toll road. Determine whether the
trucker was actually speeding.

13 Let 𝑓(𝑥) = 1 − 𝑥2/3. Show that 𝑓(1) = 𝑓(−1) = 0,
but that 𝑓′ (𝑥) ≠ 0 in the interval [−1, 1]. Explain
how this is possible, in view of Rolle’s Theorem.

(Apostol, 1967, p. 186)

14 To save up for a car, you take a job working 10
hours a week at the library. For the first six weeks,
the library pays you $8 an hour. After that, you
earn $11.50 an hour. You put all the money you
earn each week in a savings account. On the day
you start work your savings account already holds
$200. Let 𝑆 (𝑡) be the function that describes the
amount in your savings account 𝑡 weeks after your
library job begins.

(a) Find the values 𝑆 (3), 𝑆 (6), 𝑆 (8), 𝑆 ′(3), 𝑆 ′(6),
and 𝑆 ′(8), if possible, and describe theirmean-
ing in practical terms. If it is not possible to
find one or more of these values, explain why.

(b) Write an equation for the function 𝑆 (𝑡). Be
sure that your equation correctly produces the
values you calculated in part (a).

(c) Sketch a labeled graph of 𝑆 (𝑡). By looking at
the graph, determine whether 𝑆 (𝑡) is contin-
uous and whether it is differentiable. Explain
the practical significance of your answers.

(d) Show algebraically that 𝑆 (𝑡) is continuous but
not differentiable.

(Taalman and Kohn, 2014, p. 186)

3.6 l’Hôspital’s Rule

Aman is like a fraction whose numerator is what he is and whose denominator is what he thinks of himself. The larger the
denominator, the smaller the fraction.

— Leo Tolstoy

In the previous chapter, we discovered the values of the following



118 areas and antiderivatives Ch. 4

contained 25,000 gallons of oil, approximately
how manymore hours will elapse in the worst
case before all the oil has spilled? In the best
case? (Finney et al., 2001, p. 362)

5 Assume the following function 𝑓 is a decreasing
continuous function on the interval 0 ≤ 𝑥 ≤ 4 and
that the following is a table showing some function
values.

𝑥 0 1 1.5 3 4

𝑓(𝑥) 4 3 2 1.5 1

(a) Use the trapezoid rule to approximate the area
under 𝑓. (Be careful! The subintervals are not

all the same width!)
(b) Is your answer to part (a) larger or smaller

than the actual area under 𝑓? How do you
know?

6 Consider the area under 𝑦 = 5 over the interval
−10 ≤ 𝑥 ≤ 10.

(a) Sketch the region and find the area using a
basic geometry area formula.

(b) Use the trapezoid rule on 5 equal subintervals
and compare this with the answer from part
(a). Does this result make sense? Why or why
not?

4.4 Definite Integrals

Success and failure have much in common that is good. Both mean you’re trying.
— Frank Tyger

As we have seen, Riemann sums provide an approximation to the
area under a curve, and the smaller the subinterval width, the more
rectangles are used, and the better our approximation becomes. In
this section, we will explore this idea of using more and rectangles
(on smaller and smaller subintervals) to determine exact areas under
certain curves. To facilitate this, we need new symbolism to represent
the exact area under 𝑓.

The exact area under a bounded function 𝑓(𝑥) on the interval [𝑎 , 𝑏]
is denoted by ∫ 𝑏

𝑎
𝑓(𝑥) 𝑑𝑥.

The symbol
∫ 𝑏

𝑎
is called the definite integral from 𝑎 to 𝑏.

𝑥

𝑦

4

𝑓(𝑥) = 𝑥

For example, using basic geometry, it is easy to determine the exact
area under the function 𝑓(𝑥) = 𝑥 from 0 to 4. Since the area is that of a
right triangle of base 4 and height 4, we see that the exact area must be
1
2 (4) (4) = 8. Hence, we say that the definite integral is equal to 8 or, in
symbols, ∫ 4

0
𝑓(𝑥) 𝑑𝑥 =

∫ 4

0
𝑥 𝑑𝑥 = 8.

Previously, in Section 4.2, we spent some time discussing the fact
that areas can be found under bounded functions. We clarify this
discussion of exact areas (definite integrals) with an additional fact
concerning such functions.
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THEOREM 4.F Let 𝑓 be an increasing bounded function on the interval
[𝑎 , 𝑏]. Let 𝐴 be any number that satisfies

Δ𝑥
𝑛−1∑
𝑘=0

𝑓(𝑥𝑘) < 𝐴 < Δ𝑥
𝑛∑
𝑘=1

𝑓(𝑥𝑘)

for every integer 𝑛 > 1. Then 𝐴 =
∫ 𝑏

𝑎
𝑓 𝑑𝑥 as 𝑛 → ∞.

Proof. The series above are nothing more than the definitions of lrsNote that there is a similar
statement for decreasing
bounded functions. As the
argument is very similar, we will
omit the proof for decreasing
bounded functions.

and rrs, respectively. We already know that these are approximations,
so there must be some number 𝐴 such that lrs < 𝐴 < rrs. By the
definition of a definite integral, we know that

∫ 𝑏

𝑎
𝑓 𝑑𝑥 satisfies the same

inequalities as 𝐴. So we must prove that 𝐴 is the definite integral.
We begin by finding the difference between the left and right Riemann
sums.

rrs − lrs = Δ𝑥
𝑛∑
𝑘=1

𝑓(𝑥𝑘) − Δ𝑥
𝑛−1∑
𝑘=0

𝑓(𝑥𝑘)

= Δ𝑥

(
𝑛∑
𝑘=1

𝑓(𝑥𝑘) −
𝑛−1∑
𝑘=0

𝑓(𝑥𝑘)

)

= Δ𝑥

(
𝑛−1∑
𝑘=1

𝑓(𝑥𝑘) + 𝑓(𝑥𝑛) −

[
𝑓(𝑥0) +

𝑛−1∑
𝑘=1

𝑓(𝑥𝑘)

])

= Δ𝑥

(
𝑓(𝑥𝑛) − 𝑓(𝑥0) +

𝑛−1∑
𝑘=1

𝑓(𝑥𝑘) −
𝑛−1∑
𝑘=1

𝑓(𝑥𝑘)

)

= Δ𝑥(𝑓(𝑥𝑛) − 𝑓(𝑥0))

=
𝑏 − 𝑎

𝑛
(𝑓(𝑏) − 𝑓(𝑎))

which we can write as

rrs − lrs =
𝑘

𝑛

where 𝑘 = (𝑏 − 𝑎) (𝑓(𝑏) − 𝑓(𝑎)) is constant since it only depends on
constants 𝑎 and 𝑏. Clearly, the difference between the left and right
Riemann sums must be greater than the difference between 𝐴 and the
definite integral, since each of these is between the Riemann sums.
Then

0 ≤





𝐴 −

∫ 𝑏

𝑎
𝑓 𝑑𝑥





 ≤ 𝑘

𝑛

for every 𝑛 > 1. Letting 𝑛 → ∞, we see that 𝑘
𝑛 → 0, so that this

inequality approaches the equality𝐴−
∫ 𝑏

𝑎
𝑓 𝑑𝑥 = 0, or𝐴 =

∫ 𝑏

𝑎
𝑓 𝑑𝑥. �

𝑥

𝑦

𝑏

𝑓(𝑥) = 𝑥

The preceeding proof gives us an indication as to how to compute
the definite integral. Let us re-do the previous example. This time, we
want the area from 0 to any number 𝑏.

Again, using basic geometry, we may determine the exact area
under the function 𝑓(𝑥) = 𝑥 from 0 to 𝑏. The area is that of a right
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triangle of base 𝑏 and height 𝑏, so the exact areamust be 1
2 (𝑏) (𝑏) =

1
2𝑏

2.
Hence,

∫ 𝑏

0
𝑓(𝑥) 𝑑𝑥 =

∫ 𝑏

0
𝑥 𝑑𝑥 =

𝑏2

2
.

But how can we determine the exact area under the standard
parabola 𝑓(𝑥) = 𝑥2 over the interval [0, 𝑏]? For this, we rely on the
previous theorem and the formulas for sum of powers of integers from
Section 4.1. We will use a Riemann sum and find its limit as 𝑛 → ∞.

We wish to use 𝑛 equal subintervals. Since the interval [0, 𝑏] has
length 𝑏 − 0 = 𝑏, each subinterval has length

Δ𝑥 =
𝑏 − 0
𝑛

=
𝑏

𝑛
.

Since the theorem guarantees that the answer is the same whether
we use a left-hand or right-hand Riemann sum, we can choose
whichever one we want; let us choose a right-hand sum. Hence,
the 𝑥-coordinates we use are the right-hand endpoints of the subinter-
vals [0,Δ𝑥], [Δ𝑥, 2Δ𝑥], [2Δ𝑥, 3Δ𝑥], and so on, up to [(𝑛 − 1)Δ𝑥, 𝑛Δ𝑥].
We can represent each right-hand endpoint as 𝑥𝑘 = 𝑘Δ𝑥 = 𝑘𝑏/𝑛 for
𝑘 = 1, 2, 3, . . . , 𝑛. Thus, we see that

∫ 𝑏

0
𝑥2 𝑑𝑥 = lim

𝑛→∞

𝑛∑
𝑘=1

𝑥2𝑘Δ𝑥 = lim
𝑛→∞

𝑛∑
𝑘=1

(
𝑘𝑏

𝑛

)2 (
𝑏

𝑛

)
.

Nowwe expand this sum, and take the limit.

∫ 𝑏

0
𝑥2 𝑑𝑥 = lim

𝑛→∞

𝑛∑
𝑘=1

(
𝑘𝑏

𝑛

)2 (
𝑏

𝑛

)
= lim

𝑛→∞

𝑛∑
𝑘=1

(
𝑘2𝑏2

𝑛2
·
𝑏

𝑛

)

= lim
𝑛→∞

𝑛∑
𝑘=1

(
𝑘2𝑏3

𝑛3

)
= lim

𝑛→∞

𝑏3

𝑛3

𝑛∑
𝑘=1

𝑘2

= lim
𝑛→∞

𝑏3

𝑛3

(
𝑛(𝑛 + 1) (2𝑛 + 1)

6

)
= lim

𝑛→∞

𝑏3
(
2𝑛3 + 3𝑛2 + 𝑛

)
6𝑛3

= lim
𝑛→∞

𝑏3 · 2𝑛3

6𝑛3
=
2𝑏3

6
=
𝑏3

3
.

Hence, we find that

∫ 𝑏

0
𝑥2 𝑑𝑥 =

𝑏3

3
.

Exercise 4.4.1 Compute
∫ 4

0
𝑥2 𝑑𝑥.

We may use a similar procedure to find the area under 𝑓(𝑥) = 𝑥3
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over the interval [0, 𝑏]. We have
∫ 𝑏

0
𝑥3 𝑑𝑥 = lim

𝑛→∞

𝑛∑
𝑘=1

(
𝑘𝑏

𝑛

)3 (
𝑏

𝑛

)
= lim

𝑛→∞

𝑛∑
𝑘=1

(
𝑘3𝑏3

𝑛3
·
𝑏

𝑛

)

= lim
𝑛→∞

𝑛∑
𝑘=1

(
𝑘3𝑏4

𝑛4

)
= lim

𝑛→∞

𝑏4

𝑛4

𝑛∑
𝑘=1

𝑘3

= lim
𝑛→∞

𝑏4

𝑛4

(
𝑛(𝑛 + 1)

2

)2
= lim

𝑛→∞

𝑏4
(
𝑛4 + 2𝑛3 + 𝑛2

)
4𝑛4

= lim
𝑛→∞

𝑏4 · 𝑛4

4𝑛4
=
𝑏4

4
.

By now, you should see a relationship between the function underIf you are thinking that the area
under 𝑥4 over [0, 𝑏] is 𝑏5/5, you
are correct!

which we want the area, and the area. As this applies to power
functions, we will prove the the following theorem, which establishes
the relationship.

THEOREM 4.G (Definite Integral of Power Functions) If 𝑝 is a positive
integer and 𝑏 > 0, then

∫ 𝑏

0
𝑥𝑝 𝑑𝑥 =

𝑏𝑝+1

𝑝 + 1
.

Proof. We begin with the restatement of an algebraic fact for integer
𝑝 ≥ 1:

𝑎𝑝 − 𝑏𝑝 = (𝑎 − 𝑏)
(
𝑎𝑝−1 + 𝑎𝑝−2𝑏 + 𝑎𝑝−3𝑏2 + · · · + 𝑎𝑏𝑝−2 + 𝑏𝑝−1

)
,

where there are exactly 𝑝 terms in the rightmost parentheses. Let
𝑎 = 𝑛+1 and 𝑏 = 𝑛 in the identity above. Then, since 𝑎−𝑏 = 𝑛+1−𝑛 = 1,
we have, for any positive integer 𝑛 ≥ 1,

(𝑛 + 1)𝑝+1 − 𝑛𝑝+1 = (𝑛 + 1)𝑝 + (𝑛 + 1)𝑝−1𝑛 + · · · + (𝑛 + 1)𝑛𝑝−1 + 𝑛𝑝

< (𝑛 + 1)𝑝 + (𝑛 + 1)𝑝−1(𝑛 + 1) + · · ·

+ (𝑛 + 1) (𝑛 + 1)𝑝−1 + (𝑛 + 1)𝑝

= (𝑛 + 1)𝑝 + (𝑛 + 1)𝑝 + · · · + (𝑛 + 1)𝑝 + (𝑛 + 1)𝑝

= (𝑝 + 1) (𝑛 + 1)𝑝.

Similarly, we find that (𝑛 + 1)𝑝+1 − 𝑛𝑝+1 > (𝑝 + 1)𝑛𝑝. Hence,

𝑛𝑝 <
(𝑛 + 1)𝑝+1 − 𝑛𝑝+1

𝑝 + 1
< (𝑛 + 1)𝑝.

Now let 𝑛 run from all integer values from 0 to some positive integer 𝑘,
and add up each term on all sides of the inequality. We get

0𝑝 + 1𝑝 + · · · + 𝑘𝑝 <
(𝑘 + 1)𝑝+1 − 𝑘𝑝+1 + 𝑘𝑝+1 − (𝑘 − 1)𝑝+1 + · · · + 1𝑝+1 − 0𝑝+1

𝑝 + 1
< 1𝑝 + 2𝑝 + · · · + (𝑘 + 1)𝑝

which simplifies to
𝑘∑
𝑛=1

𝑛𝑝 <
(𝑘 + 1)𝑝+1

𝑝 + 1
<

𝑘+1∑
𝑛=1

𝑛𝑝.
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Changing indicies slightly, we get the more useful form

𝑘−1∑
𝑛=1

𝑛𝑝 <
𝑘𝑝+1

𝑝 + 1
<

𝑘∑
𝑛=1

𝑛𝑝

which holds for every positive integer 𝑛 ≥ 1 and every positive integer
𝑝 ≥ 1. Multiplication of these inequalities by 𝑏𝑝+1/𝑘𝑝+1 gives us

𝑏

𝑘

𝑘−1∑
𝑛=1

(
𝑛𝑏

𝑘

)𝑝
<

𝑏𝑝+1

𝑝 + 1
<

𝑏

𝑘

𝑘∑
𝑛=1

(
𝑛𝑏

𝑘

)𝑝
.

Letting 𝑓(𝑥) = 𝑥𝑝 , and 𝑥𝑛 = 𝑛𝑏/𝑘 for 𝑛 = 0, 1, 2, . . . , 𝑘, then these
inequalities become

𝑏

𝑘

𝑘−1∑
𝑛=1

𝑓(𝑥𝑛) <
𝑏𝑝+1

𝑝 + 1
<

𝑏

𝑘

𝑘∑
𝑛=1

𝑓(𝑥𝑛)

which are exactly the expressions for the left and right Riemann sums of
𝑥𝑝 on the interval [0, 𝑏]. Since 𝑓(𝑥) = 𝑥𝑝 is increasing on this interval,
we may apply Theorem 4.F. Thus,

∫ 𝑏

0
𝑥𝑝 𝑑𝑥 =

𝑏𝑝+1

𝑝 + 1
. �

Example 4.4.2
With this Theorem, we may calculate the following:

∫ 2

0
𝑥6 𝑑𝑥 =

27

7
=
128
7

.

In this manner, we have easily found the exact area under the curve 𝑦 = 𝑥6 on
the interval [0, 2] to be 128

7 . �

Exercise 4.4.3 Compute
∫ 4

0
𝑥3 𝑑𝑥.

Finding the area over [0, 𝑏] is a step in the right direction, but we
want to make this definite integral as general as possible. So next we
find the area under 𝑓(𝑥) = 𝑥 over the interval [𝑎 , 𝑏].

𝑥

𝑦

𝑎 𝑏

𝑓(𝑥) = 𝑥

Again, using basic geometry, we may determine the exact area
under the function 𝑓(𝑥) = 𝑥 from 𝑎 to 𝑏. The area is that of a right
triangle of base 𝑏 and height 𝑏, with another right triangle of base 𝑎 and
height 𝑎 cut off from it. The exact area must then be 1

2𝑏
2 − 1

2𝑎
2. Hence,

∫ 𝑏

𝑎
𝑥 𝑑𝑥 =

𝑏2

2
−
𝑎2

2
.

Exercise 4.4.4 Compute
∫ 5

3
𝑥 𝑑𝑥.

Exercise 4.4.5 Conjecture the formula for
∫ 𝑏

𝑎
𝑥𝑝 𝑑𝑥.
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You may have been wondering about the significance of the differ-
ential 𝑑𝑥 in the expression for the definite integral. This can be thought
of as arising from the definition of Riemann sums for the area between
𝑓 and the 𝑥-axis.

Consider for instance the area under a function 𝑓(𝑥) over the
interval [𝑎 , 𝑏]. If we use rectangles to approximate the area, we must
split the interval up into 𝑛 subintervals. Thus the width of each one is
(𝑏 − 𝑎)/𝑛 = Δ𝑥, and the height of each one is given by 𝑓(𝑥∗), where
𝑥∗ may be the left endpoint, right endpoint, or midpoint of [𝑎 , 𝑏]
(actually, 𝑥∗ can be any point within the subinterval). Hence, the
area of any rectangle is height × width = 𝑓(𝑥∗)Δ𝑥. By using more and
more rectangles — that is, letting 𝑛 → ∞, which forces Δ𝑥 → 0 —
we arrive at infinitely many rectangles with height described by 𝑓(𝑥)
and with infinitely small widths now described by 𝑑𝑥 rather than Δ𝑥.
Symbolically,

lim
𝑛→∞

𝑛∑
𝑘=1

𝑓(𝑥∗𝑘)Δ𝑥 =
∫ 𝑏

𝑎
𝑓(𝑥) 𝑑𝑥.

Thus, as we pass to the infinite, the measurable quantity Δ𝑥 becomes
the infinitely small quantity 𝑑𝑥.

𝑥

𝑦

𝑓(𝑥∗)

Δ𝑥

𝑥∗

𝑎
+
𝑘Δ
𝑥

𝑎
+
(𝑘
+
1)Δ
𝑥

�

Figure 4.8 – The 𝑘th
rectangle in a Riemann sum.
The height of the rectangle
is determined by 𝑓(𝑥∗). The
width of the rectangle is
Δ𝑥 = (𝑏 − 𝑎)/𝑛, where 𝑛 is
the number of subintervals.
The left-hand side of the
rectangle is a distance of
𝑘Δ𝑥 from the right endpoint
𝑎 and the right-hand side is
𝑘Δ𝑥 + Δ𝑥 = (𝑘 + 1)Δ𝑥 from
𝑎 .

Example 4.4.6
Let us make the relationship between Riemann sums and definite integrals
more explicit. In this example, we will compute a definite integral using
Riemann sums as the number of subintervals goes to infinity.

Suppose we wish to compute
∫ 5
1 3𝑥2 𝑑𝑥. By definition,

∫ 5

1
3𝑥2 𝑑𝑥 = lim

𝑛→∞

𝑛∑
𝑘=1

3(𝑥∗𝑘)
2Δ𝑥.

Since we need 𝑛 subintervals, we set Δ𝑥 = (5 − 1)/𝑛 = 4/𝑛. Choosing the right
hand endpoint of each subinterval gives us

𝑥∗𝑘 = 1 + 𝑘Δ𝑥 = 1 +
4𝑘
𝑛

so that

3(𝑥∗𝑘)
2 = 3

(
1 +

4𝑘
𝑛

)2
= 3

(
1 +

8𝑘
𝑛

+
16𝑘2

𝑛2

)
= 3 +

24𝑘
𝑛

+
48𝑘2

𝑛2
.

Now we are ready to evaluate the limit.
∫ 4

1
3𝑥2 𝑑𝑥 = lim

𝑛→∞

𝑛∑
𝑘=1

3(𝑥∗𝑘)
2Δ𝑥 = lim

𝑛→∞

𝑛∑
𝑘=1

(
3 +

24𝑘
𝑛

+
48𝑘2

𝑛2

) (
4
𝑛

)

= lim
𝑛→∞

(
𝑛∑
𝑘=1

3 +
24
𝑛

𝑛∑
𝑘=1

𝑘 +
48
𝑛2

𝑛∑
𝑘=1

𝑘2
) (

4
𝑛

)

= lim
𝑛→∞

(
3𝑛 +

24
𝑛

·
𝑛(𝑛 + 1)

2
+
48
𝑛2

·
𝑛(𝑛 + 1)(2𝑛 + 1)

6

) (
4
𝑛

)

= lim
𝑛→∞

(
12 +

48(𝑛 + 1)
𝑛

+
32(𝑛 + 1)(2𝑛 + 1)

𝑛2

)

= 12 + 48 + 64 = 124.

This agrees with the answer obtained from using the Power Rule. �
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It is also important to know how to reverse the process. That is,
given a Riemann sum, what is the definite integral the sum represents?

Example 4.4.7
We will find the definite integral represented by the Riemann sum

lim
𝑛→∞

𝑛∑
𝑖=1

(
2 +

3𝑖
𝑛

)3 3
𝑛
.

Note that the fraction on the end, 3/𝑛, must the the width of each
subinterval: Δ𝑥 = 3/𝑛. The interval over which we want the sum must then
have a total width of 3. The expression 2 + 3𝑖/𝑛 must be the 𝑥-coordinate;
hence, 𝑥∗𝑖 = 2 + 3𝑖/𝑛. In terms of Δ𝑥, this is 𝑥∗𝑖 = 2 + 𝑖Δ𝑥. This allows us to see
that 2 is must be the starting point of the definite integral. Since the width is 3,
the definite integral must be from 2 to 2 + 3 = 5. The summation can then be
written in terms of 𝑥-coordinates, and this gives us our integral.

lim
𝑛→∞

𝑛∑
𝑖=1

(
2 +

3𝑖
𝑛

)3 3
𝑛

= lim
𝑛→∞

𝑛∑
𝑖=1

(𝑥∗𝑖 )
3Δ𝑥 =

∫ 5

2
𝑥3 𝑑𝑥. �

Weclose this section by stating a useful property of definite integrals,
the proof of which is left as a problem.

THEOREM 4.H (The Linearity Property) Let 𝑓 and 𝑔 be bounded con-
tinuous functions on the interval [𝑎 , 𝑏]. Let 𝑘1 and 𝑘2 be real constants.
Then

∫ 𝑏

𝑎
[𝑘1𝑓(𝑥) + 𝑘2𝑔(𝑥)] 𝑑𝑥 = 𝑘1

∫ 𝑏

𝑎
𝑓(𝑥) 𝑑𝑥 + 𝑘2

∫ 𝑏

𝑎
𝑔(𝑥) 𝑑𝑥.

This is the property that allows us to find the area under any
polynomial. Consider a polynomial such as 𝑓(𝑥) = 3𝑥2 + 7𝑥 + 1. This
linearity property says thatwe canfind the area under𝑓(𝑥) = 3𝑥2+7𝑥+1
by finding the area under each of 𝑥2, 𝑥, and 1. Then multiply the area
under 𝑥2 by 3 and the area under 𝑥 by 7. Finally, add the areas under
3𝑥2, 7𝑥, and 1 together.

The following example illustrates this idea. We will compute the
area under a polynomial.

Example 4.4.8
Since areas may be added or subtracted from other areas, we can compute

∫ 2

0

(
𝑥3 + 5𝑥2 − 𝑥

)
𝑑𝑥 =

∫ 2

0
𝑥3 𝑑𝑥 + 5

∫ 2

0
𝑥2 𝑑𝑥 −

∫ 2

0
𝑥 𝑑𝑥

=
24

4
+ 5 ·

23

3
−
22

2

= 4 + 5 ·
8
3
− 2 =

52
3
.

Hence, we have a method to find the area under any polynomial! �
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Problems for Section 4.4

1 What is the area under the horizontal line 𝑦 = 5
over the interval [−2, 2]? What is

∫ 2
−2 5 𝑑𝑥? Make a

conjecture concerning the value of
∫ 𝑏
𝑎
𝐶 𝑑𝑥 where

𝐶 is any real constant.

2 Very often we use the evaluation notation to aid in
computing definite integrals. For instance, writ-
ing “𝑥2



3
2” indicates that we should evaluate 𝑥2 at

𝑥 = 3 and at 𝑥 = 2, then compute the difference:
𝑥2



3
2 = 32 − 22 = 5. Thus, we see that Theorem 4.G

could be restated as
∫ 𝑏

0
𝑥𝑝 𝑑𝑥 =

𝑥𝑝+1

𝑝 + 1






𝑏

0
=
𝑏𝑝+1

𝑝 + 1
.

In practice, we would then write

∫ 2

1
𝑥5 𝑑𝑥 =

𝑥6

6






2

1
=
26

6
−
1
6
=
21
2
.

Use this notation to compute
∫ 4

2
(3𝑥2 − 𝑥 + 2) 𝑑𝑥.

3 Evaluate the following.

(a)
∫ 5

−1
(𝑥 + 2) 𝑑𝑥

(b)
∫ 7

1
𝑥 𝑑𝑥

(c)
∫ 8

2
(𝑥 − 1) 𝑑𝑥

(d)
∫ 12

6
(𝑥 − 5) 𝑑𝑥

(e)
∫ 7+𝑘

1+𝑘
(𝑥 − 𝑘) 𝑑𝑥 where 𝑘 is constant

(f) What do you notice about the answers to the
preceding problems? Why do you think this
is? Explain your answer in terms of area.

Evaluate the following definite integrals. Remem-
ber to use the properties of definite integrals when
possible.

4
∫ 2

−1

(
𝑥2 + 4𝑥 − 1

)
𝑑𝑥

5
∫ 4

2
(𝑥 − 1)(𝑥 + 2) 𝑑𝑥

6
∫ −1

−3

(
3𝑥2 + 2𝑥 + 1

)
𝑑𝑥

7
∫ 2

5
𝑥 𝑑𝑥

8
∫ 3/2

1/2
(4𝑥 − 6) 𝑑𝑥

9
∫ 1

0

(
𝑥10 − 8𝑥7 + 20

)
𝑑𝑥

10
∫ 1

−1
(2𝑥 − 1)(𝑥 + 1) 𝑑𝑥

11 Use the limit definition (as shown in Example 4.4.6)

to compute
∫ 7

3
2𝑥 𝑑𝑥.

Write each Riemann sum as a definite integral.

12 lim
𝑛→∞

𝑛∑
𝑖=1

6
(
3𝑖
𝑛

)
3
𝑛

13 lim
𝑛→∞

𝑛∑
𝑖=1

(
3𝑖
𝑛

)3 3
𝑛

14 lim
𝑛→∞

𝑛∑
𝑖=1

(
3𝑖
𝑛

) [(
3𝑖
𝑛

)
− 5

]
3
𝑛

15 lim
𝑛→∞

𝑛∑
𝑖=1

(
2 +

3𝑖
𝑛

)4 3
𝑛

16 lim
𝑛→∞

𝑛∑
𝑖=1

(
3𝑖
𝑛

)3 3
𝑛

17 lim
𝑛→∞

𝑛∑
𝑖=1

𝑖4

𝑛5

18 lim
𝑛→∞

𝑛∑
𝑖=1

𝑛

𝑛2 + 𝑖2

19 lim
𝑛→∞

𝑛∑
𝑖=1

𝑖3

𝑛4

20 lim
𝑛→∞

𝑛∑
𝑖=1

1
𝑛

√
𝑖

𝑛

21 lim
𝑛→∞

𝑛∑
𝑖=1

80𝑖
𝑛2
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6 Let 𝑅 be the region bounded by 𝑦 = e𝑥 , 𝑦 = 2, and
𝑥 = 0. Find the volume of the solid whose base
is bounded by the region 𝑅 and the cross sections
perpendicular to the 𝑥-axis are semicircles.

7 Let 𝑅 be the region bounded by 𝑦 = 𝑥2 and 𝑦 = 𝑥.
Find the volume of the solid whose base is bounded
by the region𝑅 and the cross sections perpendicular
to the 𝑥-axis are semicircles.

8 Let 𝑅 be the region bounded by 𝑦 = 1
16𝑥

2 and 𝑦 = 2.

Find the volume of the solid whose base is bounded
by the region𝑅 and the cross sections perpendicular
to the 𝑥-axis are rectangles whose height is twice
that of the side in the plane of the base.

9 Find the volume of the solid whose base is bounded
by the curve 𝑦 = 2

√
sin(𝑥), the lines 𝑥 = 0, 𝑥 = 𝜋,

and 𝑦 = 0, and the cross sections perpendicular to
the 𝑥-axis are squares.

6.7 Disks and Washers, or Volume Part 2

When we ask advice, we are usually looking for an accomplice.
— Joseph-Louis Lagrange

In this section we consider solids formed by revolving a plane about
an axis. We describe this procedure by establishing the known volume
formula for a cylinder, 𝑉 = 𝜋𝑟2ℎ.

radius

𝑦 = 𝑟

height

𝑦

𝑥

Figure 6.13 – A cylinder formed by revolving a
rectangle about the 𝑥-axis.

Consider the region in the coordinate plane
bounded by the line 𝑦 = 𝑟, for constant 𝑟, and the
𝑥-axis over the interval [0,ℎ], for constant ℎ. This
region is a rectangle of dimensions 𝑟 and ℎ. But rather
than treat this rectangle as a base for which we build
cross sections, we will revolve the rectangle about the
𝑥-axis to form a solid. This creates circular cross sec-
tions of radius 𝑟 with centers on the 𝑥-axis, as shown
in Figure 6.13.

Since each cross section is a circle, we sum all the
areas of all circles to find the volume over the entire
length of the solid (the interval [0,ℎ]). Hence, using
the same reasoning as in the previous section,

𝑉 =
∫ ℎ

0
𝜋𝑟2 𝑑𝑥 = 𝜋𝑟2𝑥




ℎ
0
= 𝜋𝑟2ℎ.

� �

𝑎 𝑏

𝑓(𝑥)

𝑦

𝑥

Figure 6.14 – The disk method in general.

Consider what we have done. We took a curve
𝑓(𝑥) (which in the case of the cylinder was simply
𝑓(𝑥) = 𝑟) which bounds a region with the 𝑥-axis over
an interval [𝑎 , 𝑏] (which in the case of the cylinder
was [0,ℎ]) and revolved the region around the 𝑥-axis,
thereby creating a solid.

By revolving, we create circular cross sections
whose radius is 𝑓(𝑥) since this is the distance from
the center to the edge of each cross section. So the
area of each cross section is

𝐴(𝑥) = 𝜋 [𝑓(𝑥)]2.

Integrating (or summing) all the circular cross
sections from 𝑥 = 𝑎 to 𝑥 = 𝑏, we have

𝑉 =
∫ 𝑏

𝑎
𝜋 [𝑓(𝑥)]2 𝑑𝑥 = 𝜋

∫ 𝑏

𝑎
[𝑓(𝑥)]2 𝑑𝑥.
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Figure 6.14 shows a solid formed by revolving a region bounded by
a general curve 𝑓(𝑥) over the interval [𝑎 , 𝑏]. The figure also shows
a typical circular cross section; note the radius of the cross section is
determined by the function 𝑓(𝑥).

Exercise 6.7.1 Establish the formula for the volume of a cone of radius 𝑟
and height ℎ using an appropriately situated region in the plane that is then
revolved about the 𝑥-axis.

We clarify the method with the following definition.

Given a region 𝑅 in the coordinate plane bounded by 𝑓(𝑥) and
the 𝑥-axis over the interval [𝑎 , 𝑏], then the volume of the solid
generated by revolving 𝑅 about the 𝑥-axis is given by

𝑉 = 𝜋

∫ 𝑏

𝑎
[𝑓(𝑥)]2 𝑑𝑥.

This method is called the disk method of finding volume.

1 2 3

1

2

3

4

𝑥

𝑦

𝑂

𝑅

Figure 6.15 – The region in
Example 6.7.2.

Example 6.7.2
Consider the region 𝑅 in the plane bounded by the curve 𝑓(𝑥) = 4𝑥−𝑥2 and the
𝑥-axis over the interval [1, 3]. This region is shown in Figure 6.15. Revolving
this region about the 𝑥-axis generates a solid with circular cross sections (or,
disks). Hence, the volume of the solid is

𝑉 = 𝜋

∫ 3

1
[𝑓(𝑥)]2 𝑑𝑥 = 𝜋

∫ 3

1

(
4𝑥 − 𝑥2

)2
𝑑𝑥

= 𝜋

∫ 3

1

(
16𝑥2 − 8𝑥3 + 𝑥4

)
𝑑𝑥 = 𝜋

(
16
3
𝑥3 − 2𝑥4 +

1
5
𝑥5

)


3
1

= 𝜋

(
144 − 162 +

243
5

)
− 𝜋

(
16
3

− 2 +
1
5

)
=
406𝜋
15

.

The calculator gives the approximate volume as 85.302. �

Example 6.7.3
Suppose the region 𝑅 is bounded by the curve 𝑦 = exp(𝑥) + 1 and the 𝑥-axis
over the interval [ln(2), ln(8)]. Revolving this region about the 𝑥-axis again
produces a solid with circular cross sections. Thus, the volume of this solid is

𝑉 = 𝜋

∫ ln(8)

ln(2)
[𝑓(𝑥)]2 𝑑𝑥 = 𝜋

∫ ln(8)

ln(2)

(
e𝑥 +1

)2 𝑑𝑥

= 𝜋

∫ ln(8)

ln(2)

(
e2𝑥 +2 e𝑥 +1

)
𝑑𝑥 = 𝜋

(
1
2
e2𝑥 +2 e𝑥 +𝑥

) 


ln(8)
ln(2)

= 𝜋

(
1
2
eln(64) +2 eln(8) + ln(8) − 2 − 4 − ln(2)

)
= 𝜋(42 + ln(4))

By the calculator, we have 136.302. �

Suppose we change the axis of revolution to something other than
the 𝑥-axis. This is what we do in the next example.

Example 6.7.4
The region𝑅 is boundedby𝑓(𝑥) = exp(𝑥) and the line 𝑦 = −1over [ln(2), ln(8)].
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It is revolved around the line 𝑦 = −1. How do we find the volume?
To calculate this volume, we recall that the lengths of the radii are needed.

By revolving around the line 𝑦 = −1, we are making the radii 1 unit longer than
if we had revolved around the line 𝑦 = 0. In Figure 6.17, we see the situation.
Note that the radii are no longer simply defined by the curve 𝑦 = e𝑥 . They are
now one unit longer: the radii are actually e𝑥 +1.

It is this “new” function we must integrate. The volume of this solid is
given by

𝑉 = 𝜋

∫ ln(8)

ln(2)

(
e𝑥 +1

)2 𝑑𝑥,

which is the same integral as in the previous example, so the volume is
𝜋(42 + ln(4)). �

𝑥

𝑦

2

8

ln(2) ln(8)

𝑦 = −1

𝑦 = e𝑥

𝑂

𝑅

Figure 6.16 – The region in
Example 6.7.4.

Exercise 6.7.5 The region 𝑅 is bounded by 𝑦 = 10 − 𝑥3 and the line 𝑦 = 2
over the interval [1, 2]. Find the volume of the solid generated by revolving 𝑅
about the line 𝑦 = 2.

Notice that we have thus far always bounded our regions with a
curve and a line, and the line has been the axis of revolution. What
happens if the axis of revolution is not the line that bounds the region?

𝑓(𝑥)

𝑔(𝑥)

1 2 3−1
−1

−2

−3

−4

1

2

3

4

𝑦

𝑥
𝑂

Figure 6.17 – The cross sections (left) and the resulting solid from Example
6.7.6 (right).

Example 6.7.6
The region 𝑅 is bounded by 𝑓(𝑥) = 4𝑥 − 𝑥2 and the line 𝑔(𝑥) = 3. It is revolved
about the 𝑥-axis. What is the volume of the resulting solid?

The solid created has a hole through the middle of it; in other words, it
is a doughnut-like shape. The shape of the outer edge is determined by the
parabola, while the shape of the “hole” is determined by the line. The solid is
shown in Figure 6.17.
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This causes us to consider the cross sections once more, because they are
not disks this time. Due to the hole, each cross section, while still circular, has
a circular hole in it. The cross sections are like rings (or like the washers one
uses with bolts and screws) and can be seen in Figure 6.17. The area of the cross
section is then the area of the larger circle minus the area of the inner circle
(the hole). Note that the radii of the circles are given by the distance from the
center to the outer and inner edges; these distances are given by the functions
𝑓 and 𝑔. Hence, the area formula is

𝐴(𝑥) = 𝜋[𝑓(𝑥)]2 − 𝜋[𝑔(𝑥)]2 = 𝜋
(
[𝑓(𝑥)]2 − [𝑔(𝑥)]2

)
.

By integrating 𝐴(𝑥) over the interval, we obtain the volume.
Back to the problem: Notice that we were not explicitly given an interval

over which to integrate. However, we can find it. The interval is given by the
𝑥-coordinates of the intersection points of 𝑓 and 𝑔. Setting 𝑓(𝑥) = 𝑔(𝑥) gives
4𝑥 −𝑥2 = 3 whose solutions are 1 and 3, from which we get an interval of [1, 3].

Thus, using the washer method, we get a volume of

𝑉 = 𝜋

∫ 3

1

(
[𝑓(𝑥)]2 − [𝑔(𝑥)]2

)
𝑑𝑥 = 𝜋

∫ 3

1

( [
4𝑥 − 𝑥2

]2
− 32

)
𝑑𝑥

= 𝜋

∫ 3

1

(
16𝑥2 − 8𝑥3 + 𝑥4 − 9

)
𝑑𝑥 = 𝜋

(
16
3
𝑥3 − 2𝑥4 +

1
5
𝑥5 − 9𝑥

)


3
1
=
136𝜋
15

,

or 28.484. �

The method used in the previous example has a name.

Given a region 𝑅 in the coordinate plane bounded above by 𝑓(𝑥)
and below by 𝑔(𝑥) over the interval [𝑎 , 𝑏], then the volume of the
solid generated by revolving 𝑅 about the 𝑥-axis is given by

𝑉 = 𝜋

∫ 𝑏

𝑎

(
[𝑓(𝑥)]2 − [𝑔(𝑥)]2

)
𝑑𝑥.

This method is called thewasher method of finding volume.

Next, we use this washer method again to find the volume of a solid
of revolution.

Example 6.7.7
The region 𝑅 is bounded by 𝑓(𝑥) = 8𝑥 − 𝑥2 and 𝑔(𝑥) = 𝑥2. Find the volume of
the solid generated as 𝑅 is revolved about the 𝑥-axis.

As in the previous example, we must find the intersection points so we
know what interval we are to integrate over. Setting 8𝑥 − 𝑥2 = 𝑥2 gives 𝑥 = 0
and 𝑥 = 4; hence the interval is [0, 4].

Note that the cross sections perpendicular to the axis of revolution (the
𝑥-axis in this case) are washers. This can be seen in Figure 6.18. Hence the
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volume is given by

𝑉 = 𝜋

∫ 4

0

( [
8𝑥 − 𝑥2

]2
−

[
𝑥2

]2)
𝑑𝑥

= 𝜋

∫ 4

0

(
64𝑥2 − 16𝑥3 + 𝑥4 − 𝑥4

)
𝑑𝑥

= 𝜋

∫ 4

0

(
64𝑥2 − 16𝑥3

)
𝑑𝑥

= 𝜋

(
64
3
𝑥3 − 4𝑥4

)


4
0
=
1024𝜋

3

or 1072.33. �4

16

-16

𝑦

𝑥
𝑂

Figure 6.18 – A solid
formed by revolving a region
bounded by two parabolas.

Finally, we see how a graphing calculator can help us.

Example 6.7.8
Suppose the region 𝑅 is bounded by 𝑓(𝑥) = ln(𝑥), 𝑔(𝑥) = e−𝑥, and the line
𝑥 = 4. Find the volume of the solid generated by revolving 𝑅 about the line
𝑦 = 3. (See the figure below.)

𝑥

𝑦

e−𝑥 ln(𝑥)

𝑦 = 3

𝑥
=
4

𝑂

𝑅

1

2

1 2 3

To calculate the volume, we must first determine the length of the radii.
Since the region being revolved is not bounded by the axis of revolution,
there will be a hole created in the solid, and therefore we must determine the
length of the radii from the center to the inner and outer edges of the region.
Hence, the length of the radius to the outer edge of the region is equal to the
distance between the axis of revolution and the function. In this case, that is
𝐺 (𝑥) = 3 − e−𝑥 . The distance from the axis of revolution to the inner function
is 𝐹 (𝑥) = 3 − ln(𝑥).

Next, we must find the interval. Using the calculator, we find the inter-
section point of Y1 = 3-eˆ(-X) and Y2 = 3-ln(X) to be X = 1.309799586.
Storing this as A so we may use it later (press X STO A), we set up the volume
integral.

This time, because the axis of revolution is above the region, 𝐺 is the outer
radius and 𝐹 is the inner radius. Hence, we need to integrate 𝐺2 − 𝐹2. The
volume integral is then

𝑉 = 𝜋

∫ 4

1.309799586

( [
3 − e−𝑥

]2
− [3 − ln(𝑥)]2

)
𝑑𝑥.

Using the calculator, we enter 𝜋*fnInt((Y1)ˆ2-(Y2)ˆ2,X,A,4) where we
have the functions entered in Y1 and Y2, and A is the stored 𝑥-coordinate of the
intersection point. The calculator gives the approximation 34.391. �
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Problems for Section 6.7

The region 𝑅 is bounded by the given curves and/or
lines. Find the volume of the solid generated by
revolving 𝑅 around the given axis. You may find
graphing the curves on your calculator useful.

1 𝑦 = cos(𝑥), 𝑦 = sin(𝑥), 𝑥 = 0, 𝑥 = 𝜋/4; axis:
𝑥-axis

2 𝑦 = 1/
√
𝑥, 𝑥 = e, 𝑥 = e3, 𝑦 = 0; axis: 𝑥-axis

3 𝑦 = 3 − 𝑥2, 𝑦 = −1; axis: 𝑦 = −1

4 𝑦 = 16𝑥 − 4𝑥2, 𝑦 = 0; axis: 𝑦 = −20

5 𝑦 = (𝑥 + 3)3, 𝑦 = 0, 𝑥 = 2; axis: 𝑦 = −1

6 For the following problems, set up the required vol-
ume integral, then evaluate that integral on your
calculator.

(a) The region 𝑅 is bounded by the curve 𝑦 =
sin 𝑥 cos 𝑥 and the 𝑥-axis from 𝑥 = 0 to 𝑥 = 𝜋

2 .
Find the volume of the solid generated by
revolving 𝑅 about the 𝑥-axis.

(b) The region 𝑅 is bounded by the curve 𝑦 = e𝑥
and the lines 𝑦 = 2 and 𝑥 = −1. Find the
volume of the solid generated by revolving 𝑅
about the line 𝑦 = e.

(c) The region 𝑅 is bounded by the curve
16𝑦2 + 9𝑥2 = 144 and the line 4𝑦 = 3𝑥 + 12
in Quadrant II. Find the volume of the solid
generated by revolving 𝑅 about the 𝑥-axis.

7 (Calculator) Let 𝑅 be the region bounded by
the graph of 𝑓(𝑥) = e2𝑥−𝑥2 and the graph of
𝑔(𝑥) = sec(𝑥).

(a) Find the area of the region 𝑅.
(b) The region 𝑅 is revolved about the 𝑥-axis. Find

the volume of the resulting solid.
(c) The region 𝑅 is revolved about the line 𝑦 = 3.

Find the volume of the resulting solid.
(d) The region 𝑅 is the base of a solid whose

cross sections perpendicular to the 𝑥-axis are
squares. Find the volume of this solid.

6.8 Cylindrical Shells, or Volume Part 3

Anyone who cannot cope with mathematics is not fully human. At best he is a tolerable subhuman who has learned to
wear shoes, bathe, and not make messes in the house.

— Robert A. Heinlein

Youmay have noticedwhenwe discussed disks andwashers that we
never revolved our region about any vertical axis. It is to this problem
we now turn. Revolving a region around the 𝑦-axis can be done more
efficiently with a method other than disks or washers. (That is not to
say that it is impossible to use the disk andwashermethod. See problem
9 for instance.) To describe this newmethodwe compute the volume of
the solid generated by revolving around the 𝑦-axis the region bounded
by 𝑓(𝑥) = (𝑥 − 2)2 in the first quadrant.

Instead of creating circular cross sections as in the disk method, we
consider this solid built of many hollow cylinders, each inside another.
Figure 6.19 shows the region, the solid, and a few such “cylindrical
shells.” Although we are not using a cross section method, we still
compute volume by a sum; in this case, we sum all the cylindrical shells.The shell is just the outer

portion of a cylinder without a
top or bottom. You can think of
a cylindrical shell as the label on
a can of soup.

The thickness of each shell is infinitesimally small (as with the
disks). As such, it is as if the shells consist only of the surface of
a cylinder. The areas of the surfaces is what we sum. The area of
each surface is simply that of a rectangle—a rectangle that has been
wrapped in a circular fashion, but a rectangle nonetheless. The width
of the rectangle is 𝑓(𝑥), and the length is the circumference of the
cylindrical shell. This is 2𝜋𝑥 since 𝑥 is the radius of each shell. Hence,


