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Preface

I would like to throttle the man who wrote this book.
— HermannWeyl

To throw yet another calculus book into the marketplace is a
laughable exercise indeed. Why bother? Aren’t there plenty of good
books from which one may learn calculus? So why another? The only
reason one has for writing a new book on an old subject is that it must
present some new viewpoint or some new reason for existence. Those
reasons are embodied in one simple statement: This book presents
calculus the way I think it should be taught to high school students.
I originally wrote this book because the existing calculus textbooks

a) are too big to lug around in your hands or in your backpack, b)
have too many exercises, c) try to do far too much to please hundreds
of different needs, and d) those books that are directed towards high
school are slaves to the Advanced Placement curriculum.”Advanced Placement” and

“AP” are registered trademarks
of the College Board, which is
not associated or affiliated with
the production of this book.

Nearly every word of this book has appeared in separate books
over three editions in the last 11 years. So nothing here has not been
classroom tested and revised numerous times. However, this is the
first time everything has been collected in one volume. My goals for
the book from 11 years ago remain unchanged, and they still resonate
today. This book is not the typical 1200-page calculus doorstop. That
is because this book was written with teaching and learning in mind.
Each section was written as if I was teaching in front of a class – nearly
everything written is what I would say to my students, write on the
board, or have them discuss. As such, there are no “supplemental” or
“optional” sections: everything is taught and all is (hopefully!) learned.
Many calculus books are huge, not only for including unused

content, but also for including vast numbers of unattempted problems.
There are simply too many exercises for a student to complete in one
year inmost calculus textbooks. In this book, every problem is attempted
by every student. Problems have been chosen carefully to be important,
relevant, and worthwhile. As a result, there are not many problems
at the end of a section. Should students need additional practice with
mastering the skills of, say, the chain rule, such material is easily
accessed elsewhere—in other books or on the internet—and as such I
felt it was not worthwhile to include buckets of drill exercises.
Proofs are an important aspect of this book. The study of calcu-

lus begins the transition between computation-driven mathematics to
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proof-driven mathematics. Yet proofs are often neglected in the teach-
ing of high school calculus. The book is some attempt at rectifying that
situation. I have tried to present rigorous proofs without delving into
the higher analysis of the real numbers. Where rigor is not possible,
or where such a proof would deliver more confusion than insight, I
present an inuitive argument based on assumptions of certain proper-
ties of the real numbers. As the student progresses through the book,
the rigor increases slightly. But in every case, the proofs are written
in an accessible way in order to give high school students practice at
thinking about proofs and reading proofs, as well as understanding the
logic behind a statement of a theorem.
Most calculus books that are geared towards high school students

are written with the goal of the student passing the AP exam. This is
not an indictment of College Board’s goals for calculus. Indeed, there
is much that is good about the focus on understanding, justifications,
and application. However, there is also much lacking: hyperbolic
functions, real uses of Euler’s method, other indeterminate cases for
l’Hôspital’s rule besides the 0/0 case, and trigonometric substitution,
among others. Students learning nothing but the topics listed in the
Course Description will do well on the Exam, but is the AP Exam the
main reason a high school student should learn calculus? I don’t think
so. I believe that the student should learn calculus well in order to learn
calculus, one of themost important intellectual endeavors of the human
race, and to apply calculus, one of the most important tools in scientific
application and prediction. The AP exam is extra; students who know
calculus well will, of course, do well on the AP exam. This book does
include every topic in the AP Calculus BC Course Description, for those
teachers or students who wish to learn calculus for the AP exam.
Finally, I wish to reiterate that this book was written for one need

and one need only: to present calculus to gifted high school students.
There is no other motivation for this book: it is not intended for
“Advanced Placement,” for “liberal arts majors,” for “future math
teachers,” or for “engineering majors.” This book does not try to be
all things to all instructors. It is simply a concise textbook for gifted
high school students—students who may choose to become liberal arts
majors, math teachers, or engineers.

Organization. Every topic in a traditional sing-variable or mul-
tivariable calculus course is included to create a comprehensive high
school calculus course. The following is a chapter-by-chapter summary
of the book. The following is a chapter-by-chapter summary of the
book.
Chapter 1: Rate Equations. This is the most crucial chapter of

the book. Here, the students do number crunching to predict physical
phenomena based on the rate at which the phenomona occur. They
use Euler’s method extensively before it is made formulaic. This
sets up the students to understand how to work with and use rates
to make predictions. Students also must make decisions about the
validity of the data, determine constants used in exponential and
logistic growth, and judge the validity of their predictions. Euler’s
method is used throughout the first volume as an investigative tool. In
addition, problems in Section 1.4 set up the idea of Riemann sums and
foreshadow the Fundamental Theorem of Calculus.
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Chapter 2: Rates and Derivatives. After dwelling on the nu-
merical and graphical, we introduce the algebraic as a way to make
our predictive abilities more precise. Following this is a traditional
approach to derivative rules, but with more of a focus on presenting
proofs of major theorems, and less of a focus on the details of limits.
Applications of differentiation are deferred to Chapters 3 and 6 so that
we may use integration in applications as well.
Chapter 3: Using the Derivative. This chapter starts with the

notion of the differential and then applies it to approximations, related
rates, and implicit differentiation. The Mean Value Theorem continues
the focus on proofs, and then we use derivatives to return to limits with
l’Hôpital’s Rule and limits involving infinity.
Chapter 4: Areas and Antiderivatives. Like the arrangement

in the first three chapters, we introduce the numerical and graphical
first (Sections 1 through 3) before the algebraic (Sections 4 and 5).
The sixth section of this short chapter wraps up the question of area
computations.
Chapter 5: The Integral as a Function. The Fundamental

Theorem of Calculus is stated and proved before students learn any
antiderivative rules (other than basic reversal of differentiation) so that
students don’t get the impression that the Fundamental Theorem is
just about antiderivatives. It is this chapter where the logarithmic (in
terms of an integral) and the exponential (in terms of the inverse of the
logarithm) functions are defined.
Chapter 6: Modeling Physical Phenomena. Here we find the

traditional applications of single-variable calculus. Most books separate
these applications so that they occur closer to the respective differen-
tiation or integration chapters; I feel that the applications are more
meaningful and relevant when presented after differentiation and inte-
gration have been introduced. Certainly, problems in position, velocity,
and acceleration are more realistic when one has both derivatives and
integrals at one’s disposal, as are other problems from physics (Sections
6.4 and 6.5). The treatment of volume of solids of revolution is delib-
erately slow-paced to give students time to become familiar with these
new methods.
Chapter 7: Differential Equations. Here, we take another

look at the situations in Chapter 1, but this time from the perspective of
having built a huge toolbox of more precise techniques.
Chapter 8: Infinite Series. The chapter begins in a similar

vein as Chapter 4 did, with a development of extending the idea of a
linear approximation to polynomial approximations and then Taylor
polynomials representing transcendental functions. Then we raise the
question of the convergence of an “infinite-degree” polynomial. Over
the course of the chapter, we answer that question through convergence
tests, power series, Maclaurin series, and finally Taylor series.
Chapter 9: New Types of Functions. This introduces vectors,

parametric equations, and polar coordinates as new types of functions.
We use these to model curves whose “𝑦 = 𝑓(𝑥)” form is not regarded
as a function. We also use vectors and parametric equations to solve
motion problems.
Chapter 10: Linear Algebra. This is a short introduction to the

concepts of linear algebra. The theory of three-dimensional vectors
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is fully developed, as are matrices and determinants. All of this is
needed for applications of partial derivatives, but many calculus books
give this a quick and incomplete treatment. Linear algebra is useful
and important in its own right and not just a tool for calculus in three
dimensions. Continuing that theme, in the remainder of the chapter
are topics traditional in linear algebra courses, but not usually included
in calculus books. It is a shame, as eigenvectors and eigenvalues fit
nicely with differential equations that model predator-prey problems
(which are included in Chapter 4).
Chapter 11: Partial Derivatives. A more traditional approach

to partial derivatives is found here, but with a few twists. Mirroring
the development of single-variable derivatives in Volume 1, the partial
derivative is introduced numerically before the algebraic aspect takes
over. Applications appear throughout this chapter: biophysics, busi-
ness, and chemistry, among others. The Jacobian and its purpose is
introduced as a differential matrix and used extensively in the next
chapter. Differetials of composite functions and the general chain rule
lead into the Implicit Function Theorem. We also discuss extrema,
including use of the Lagrangemultiplier. Eigenvalues and eigenvectors
also make a return when discussing extrema on quadratic surfaces.
Chapter 12: Multiple Integrals. The multiple integrals only

run the first five sections, then line and surface integrals, and how
to express and evaluate them as multiple integrals, take over for the
remainder of the chapter. Many applications are included throughout.
All theorems in this chapter are stated in terms of rectangular equations
as well as in terms of vectors. Transforming regions and integrals
from rectangular to polar is used throughout; however, spherical and
cylindrical coordinates are not used. The reason for the omission of
these coordinate systems is that I believe both systems can be easily
learned by the student if the need arises, given a firm background in
polar coordinates. The three major theorems of multivariable integrals
are developed and explained (Green, Gauss, and Stokes), as well as the
concept of line integrals which are independent of path.
Chapter 13: More Differential Equations. This short chapter

includes simple techniques that rely on partial derivatives and infinite
series. In a sense this chapter is an “application” of multivariable ideas
to single variable differential equations.
Appendices. The appendices are split into three sections. The first

is a list of 40 Challenge Problems offered to the students as extra credit
in the class. They are difficult, and no answers are provided. The
second section is a list of formulas. Also included is a blank unit circle
diagram that students are encouraged to fill in. The third section is an
essay concerning being successful in a mathematics class. It includes
suggestions for studying, homework, asking questions in class, getting
extra help, and preparing for a test.
At the end of each chapter is a page titled “At the End of theChapter,

You Should Be Able To. . . ”. This page acts as an outline of the topics
and skills students should have by the close of each chapter. It is one
thing to have a goal at the beginning of each section, or a summary
of each section at the end of the section. However, students need to
develop the idea of a cumulative assessment, and they sometimes have
trouble preparing for such an assessment. This new feature of the book
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should help students study for a test and to help focus their review on
any deficits they may have.
Chapters 1 through 9 and the appendices constitute a complete AP

Calculus BC for those instructors who teach BC.

Problems and Exercises. Most sections have at least one “Ex-
ercise” in the text. These exercises are designed to be completed by
the student at that point in the lesson. They extend recent concepts,
foreshadow upcoming ideas, or are for practicing new skills. I use these
as classwork assignments, completed individually or in small groups.
One section common to each chapter is the section entitled “Prepa-

ration and Extension.” The Preparation problems are designed to
prepare students for a chapter test. The problems here are similar to
test questions that I write and are a good measure of howwell prepared
the student is for the test. At the beginning of each Preparation section
is a smattering of review problems as well. They are offered to help
students retain previously learned concepts. The Extension problems
are meant to challenge the students by extending the concepts and
skills learned in that chapter. Groups of three or four students work
these problems together and they have a minimum of three weeks to
complete them. Very often we forget that mathematics is a actually a
group activity, and students should have opportunities to model real
mathematical problem-solving as practiced by mathematicians.

History. In 2002, inspired by a Book of Exerciseswritten by calculus
teacher Sergio Stadler at the Marist School in Atlanta, I wrote my own
supplement to the calculus textbookmy classes used that focused onAP-
style questions and problems, as well as some extra topics not currently
included in the AP curriclum. What I thought would be a small project
blossomed into a 250-pageAPCalculus ProblemBook. About two-thirds
of the problemswere original, but I must confess that the best problems
I stole from various sources. The ProblemBookwas self-published every
school year (that is, Imade the copies, collated them, andpunchedholes
in the papers and ran the comb bindings through) which allowed me
to make corrections and additions (or subtractions) easily. As the years
went by, three unforseen consequences arose from using the book.
First, I noticed that my students preferred the Problem Book to the

regular textbook. They seemed more willing to do the problems and
carry it around as opposed to the big textbook. This led to eventually
dropping the published textbook altogether, and using the Problem
Book as the sole “text.”
Second, I realized that I could put everything my students needed

into one place. In future editions, I included the syllabus, labs, old
tests, challenge problems, study tips, group projects, practice exams,
and other items. This allowed the students to simply keep up with one
book where everything was located instead of keeping up with multiple
handouts. And, by including everything in one book I didn’t visit the
copy machine throughout the school year to make all the handouts and
worksheets.
The third consequence was a positive influence on how I teach. I

began to include problems specifically designed to be worked in pairs
or groups, so that more collaborative learning was taking place. It also
allowed me the flexibility to assign homework problems on a class-by-
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class basis. I included group problem sets for those occasions when a
substitute was necessary, so no day was ever wasted. These features
exist in the present work—the “Exercises” are designed to be worked
in class by pairs of students, and the “Extension Problems” are used as
problem sets for groups of three or four students to tackle over a period
of weeks.
But, students missed the examples of a textbook, and I grew

complacent with teaching calculus the same way each year. So I
started to wonder how best to shake things up. With the announcement
that Georgia was moving to an integrated mathematics curriculum, I
was charged with re-aligning the “calculus-and-beyond” classes at my
school. That meant taking another look at the post-calulus courses:
Multivariable Calculus, Linear Algebra, History of Mathematics, and
Discrete Mathematics. The latter two changed little, and I still teachThe content of Discrete

Mathematics did not change but
the name did. It was relaunched
as “Advanced Finite
Mathematics”. We also added a
course in introductory
operations research called
“Mathematics of Industry and
Government”.

them both. Material from linear algebra and multivariable calculus
were always approached together in a single year, and I wanted to
include differential equations to a greater extent than in the past.
So I took this opportunity to rethink my approach to calculus as a
whole, and devised my own two-year calculus curriculum that would
encompass everything required for students to do well on standardized
tests, other single-variable calculus topics, as well as some differential
equations, linear algebra, and multivariable calculus. Thankfully, my
administration encouraged my ideas and was completely supportive.

Technicalities. I began work on the book in June 2007. Besides
creating something for my classes, I also approached this as an exercise
in LATEX. I started using LATEX in late 2003, so I was familiar with the
program (there was a learning curve: the code for Problem Book is quite
rough) and knew the possibilities. I started this book on a Windows
machine using the fantastic MikTEX distributionwith the TEXnicCenter
editor, but I soonmigrated to aMacBookwhere I nowuse thewonderful
MacTEX and the TEXShop editor.
When I first learned how to draw figures in LATEX, I used the first

package I found, which was TEXdraw. TEXdraw generates PostScript
drawings and was suitable for the limited pictures I needed at the time.
However, as this book progressed, I needed more than TEXdraw was
capable of doing. Not wanting to redo every single figure, I needed
another PostScript-output package. Hence, I started using the PSTricks
bundle of packages. The resulting figures in this book are all PSTricks
code.

Chuck Garner
Conyers, Georgia

June 2021
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Chapter 1

RATE EQUATIONS

Have you ever heard someone—maybe you—say any of the fol-
lowing?

“The population is growing more slowly.”

“The plane is landing smoothly.”

“The economy is picking up.”

“The tax rate is constant.”

“The unemployment rate is decreasing.”

“Stock prices have peaked.”

What do these statements have in common? They are all describing
change. What do these statements have to do with calculus? Calculus
is the mathematics of change.

We begin our journey by discussing statements of this type. Each
of the statements above describes a rate of change, a fundamental
concept in mathematics and science. In this chapter we will investigate
these rates through numerical and graphical analysis. Rateswill usually
be described by rate equations.

To be a bit more precise about it, rate equations are used to describe,
predict, and model real-world phenomena, such as the population of
Georgia, the growth of yeast bacteria, and the disposal of nuclear waste.

Wewillmodel these situations, introduce some usefulmathematical
tools for investigating these models, and test our predictions against
real-world data. In later chapters, we will develop algebraic and
analytical methods for investigating rate equations.
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1.1 Water Flowing Into a Tank

In the mathematics I can report no deficience, except that it be that men do not sufficiently understand the excellent use of
the pure mathematics, in that they do remedy and cure many defects in the wit and faculties intellectual. For if the wit be
too dull, they sharpen it; if too wandering, they fix it; if too inherent in the sense, they abstract it. So that as tennis is a game
of no use in itself, but of great use in respect that it maketh a quick eye and a body ready to put itself into all postures; so in
the mathematics, that use which is collateral and intervenient is no less worthy than that which is principal and intended.

— Roger Bacon

Before we begin with rate equations, we should begin simply with
rates. Consider the three situations below, each with a graph plotting
the time it takes to fill a tank with water, versus the volume of water in
the tank.

Situation I. Water is flowing into a tank that is initially empty at
a constant rate of 40 gallons per minute for 6 minutes. Since the rate
is constant, we know that there must be 6 × 40 = 240 gallons in the
tank. The graph is therefore a line with endpoints (0, 0) and (6, 240).
The slope of the line is 40, the same as the rate. This gives us our first
interpretation of a rate: slope.

Situation II. The tap, closed at the beginning, is gradually opened
over 6 minutes, so that at 6 minutes the tank contains 200 gallons.
Here, the graph is concave up, meaning that the rate of water flow

increases. The important question here is this: What is the average rate
of water flow over the 6-minute interval? The answer is the slope of the
line that connects the endpoints (0, 0) and (6, 200). Thus, the average
rate of change is 2006 ≈ 33.33 gallons per minute.

Situation III. The tap, opened so that water flows at a rate of 40
gallons per minute, is gradually closed, so that at 6 minutes the tank
contains 160 gallons. The graph is concave down, meaning that the
rate of water flow decreases. The average rate of change is 1606 ≈ 26.667
gallons per minute.
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Figure 1.1 – Three different situations for water flowing into a tank

The dashed lines in the graphs above connect the endpoints over
which we compute the average rate of change. Such a line is called a
secant line.
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Exercise 1.1.1 At time 𝑡 = 0, water begins to flow from a tap into an empty
tank at the rate of 40 gallons per minute. This flow rate is held constant for
2 minutes, then the tap is gradually closed until at 𝑡 = 4 the flow rate is 5
gallons per minute. This new rate is held constant for the final 2 minutes, so
that at time 𝑡 = 6, the tank contains 120 gallons.

(a) Draw a graph of the volume of water in the tank over the first 6minutes.

(b) What is the average rate of flow over the interval from 2 to 4 minutes?
Draw a secant line on your graph that conveys this information.

(c) If we wanted to put the entire 120 gallons into the tank at a constant
rate, what would that constant rate be?

(d) Now suppose that a pump is started at 𝑡 = 2, and, for the next 4
minutes, pumps water out of the tank at a constant rate of 15 gallons
per minute. The graph you drew in part (a) now represents the total
amount of water flowing into the tank at time 𝑡. On the same axes as
your volume graph, draw the graph that represents the total amount of
water pumped out at time 𝑡. How do you now intepret the total amount
of water at time 𝑡?

(e) What is the total amount of water in the tank at time 𝑡 = 6?

(f) On your graph from part (e), show how to find the point at which the
water level in the tank is a maximum.

(g) What is the flow rate into the tank at the point found in part (f)?

Let us introduce some convenient mathematical shorthand for the
rate of change. Take Situation I from the previous page. If we let 𝑉
represent the volume of water in the tank, then the rate at which water
flows into the tank will be denoted by 𝑉 ′. (The symbol ′ is a prime
mark so that 𝑉 ′ is read “𝑉 prime.”) For instance, in Situation I, we
have 𝑉 ′ = 40.
Notice that in Situation II and Situation III, the rate is not constant,

and so 𝑉 ′ cannot be expressed as easily as in Situation I. One of
the questions that calculus helps us answer is that of finding and
interpreting expressions for such nonconstant rates. In the next section,
we will develop one such technique.The material in this section and

the exercise is adapted from
Taylor (1992). Exercise 1.1.2 Referring to the tank in Exercise 1.1.1, suppose the pump

does not operate, so that water is only flowing into the tank. Find:

(a) the exact time 𝑡 = 𝑘 for which the average flow rate into the tank over
the first 𝑘 minutes is 25;

(b) the exact time 𝑡 = 𝑚 for which the average flow rate into the tank over
the interval from𝑚minutes to 6 minutes is 15;

(c) a time interval from 𝑝 to 𝑝 + 4 minutes over which the average flow
rate is the same as the average flow rate over the entire 6 minutes.

Problems for Section 1.1

1 Illustrate the results in Exercise 1.1.2 using secant
lines on the graph.

2 Again referring to the tank in the exercise, now
suppose that the pump does operate. If the pump
continues past 6 minutes operating at 15 gallons

per minute, and water continues past 6 minutes
flowing in at 5 gallons per minute, then at what
time will the tank be empty?

3 A tank is being filled at a variable rate. The only
thing known is that between 1 and 2 minutes, the
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average inflow rate is 18 gallons per minute, and
the amount of water in the tank at 2 minutes is 42
gallons. What is your best estimate for the amount
of water in the tank at 2.5 minutes?

4 A tank is being filled at a variable rate. The only
thing known is that between 1 and 2 minutes, the
average inflow rate is 18 gallons per minute, and
the amount of water in the tank at 2 minutes is 36
gallons. What is your best estimate for the amount
of water in the tank at 2.5 minutes?

5 A tank has 20 gallons of water in it, then a tap is
opened and water flows into the tank. From 0 to
3 seconds, the average flow rate is 6 gallons per
second. From 3 to 5 seconds, the average flow rate

is 15 gallons per second. How many gallons of
water are there in the tank at 5 seconds?

6 Suppose the equation of volume of water in a
tank at time 𝑡 for the first 10 seconds is given
by 𝑉 (𝑡) = 0.3𝑡2. Find the average inflow rate over
(a) the first 5 seconds; (b) seconds 2 to 5; (c)
seconds 4 to 5; (d) seconds 4.5 to 5; (e) seconds
4.9 to 5. As the time interval gets shorter, to what
value does the average inflow rate approach?

7 Suppose the volume of water that is flowing out of a
full tank is given by 𝑉 (𝑡) = 1024 − 0.25𝑡3. The time
at which the tank is empty is when 𝑡 = 𝑐. Find the
value of 𝑐, then use it to find the average outflow
rate over the interval from 𝑐 − 1 to 𝑐 seconds.

1.2 Population Explosion

In the company of friends, writers can discuss their books, economists the state of the economy, lawyers their latest cases,
and businessmen their latest acquisitions, but mathematicians cannot discuss their mathematics at all. And the more

profound their work, the less understandable it is.
— Alfred Adler

Thomas Malthus wrote in an essay in 1798 that the growth of theThomas Malthus (1766-1834)
was an English economist. His
essay was titled “An Essay on the
Principle of Population.”

human population is very different from that of the growth of the food
supply. He concluded that the human population would grow so fast
that famine would be a global epidemic. Malthus, in fact, referred to a
rate equation in his essay that simply says that the rate of population
growth is proportional to the population. (In simpler terms, this means
that the greater the population, the faster the rate of growth.)
Let us consider his statement again with a bit of mathematical

symbolism. We let 𝑃 represent the population; that is, the number
of people. Since the growth of that population is related to 𝑃, let us
denote the rate of growth of that population by 𝑃′. HenceMalthus’ rate
equation becomes the proportion

𝑃′ = 𝑘𝑃

where the real number 𝑘 is called the constant of proportionality.
We will now use Malthus’ equation to predict the population of

the state of Georgia in the year 2030. Table 1.1 lists the population of
the state of Georgia according to U. S. Census information for the years
1900 to 2010 in 10-year intervals.
The first obstacle we face is how to find the constant of proportion-

ality. We cannot find it exactly, but we can approximate it using the
data in the table. Notice that if we solve Malthus’ equation for 𝑘 we get

𝑘 =
𝑃′

𝑃
.

So we need only to divide values of 𝑃′ by 𝑃 to find 𝑘. But how do we
find values of 𝑃′? We use the average rate of change in the population
over every 10-year interval. This means we treat the years as single data
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points, not as representing 10-year intervals. Thus, in the following
computations, the years have been divided by 10 so they act as single
data points. For instance, for the years 1900 to 1910, we have

Year Population
(millions)

1900 2.216
1910 2.609
1920 2.896
1930 2.909
1940 3.124
1950 3.445
1960 3.943
1970 4.590
1980 5.463
1990 6.478
2000 8.186
2010 9.688

Table 1.1 – Population of
the state of Georgia,
rounded to the nearest
thousand. Data from the
U.S. Census Bureau, 2013.
(quickfacts.census.gov/
qfd/states/13000.html).

𝑃′ ≈
2.609 − 2.216
191 − 190

=
0.393
1

= 0.393.

Therefore,
𝑘 =

𝑃′

𝑃
≈
0.393
2.609

= 0.151.

Notice that we have rounded to the nearest thousandth which is
appropriate for this estimation; however, more decimals places may be
necessary in other computations. Also, we have not used the population
figures inmillions, but have treated the figures as if they were decimals.
This will cause no problem, as long as we remember that our predicted
answers are in millions. Most interestingly, we somewhat arbitrarily
assumed 𝑃 was the population in 1910 in the final calculation above.
There is no mathematically valid reason to choose the 1910 population
rather than the 1900 population. But we can offset this randomness by:
finding the slope between the years 1910 and 1920; dividing again by
the 1910 value; and taking the average of this with the previous result.
This gives an approximate measure of the rate of change during the
year 1910, rather than between 1900 and 1910, or between 1910 and
1920.
The slope between 1910 and 1920 is

𝑃′ ≈
2.896 − 2.609
192 − 191

= 0.287;

the 𝑘-value is
𝑘 =

𝑃′

𝑃
≈
0.287
2.609

= 0.110.

Thus, the average of our two 𝑘-values at the year 1910 is
0.151 + 0.11

2
= 0.1305.

We have used four decimal
places rather than the three we
used before in order to better
compare this 𝑘-value with later
results.

Mathematically, we have computed what is called the symmetric
difference around the point (1910, 2.609). The symmetric difference
is slope “around” a point, using 𝑥-values (the years in this case) that
are spaced the same distance apart on either side of the point. Since
the years are always 10 years apart, our “averaging” the two 𝑘-values
is equivalent to finding the slope between the points (1900, 2.216) and
(1920, 2.896), then dividing by the population at 1910 (again treating
the years as single data points):

2.896 − 2.216
192 − 190

=
0.680
2

= 0.340,

then
𝑘 ≈

0.34
2.609

= 0.1303.

Exercise 1.2.1 What are the units of measure for 𝑃′?
Exercise 1.2.2 Create a table for the years 1910 to 2000 in 10-year intervals,
and compute the approximate value of 𝑘 for each year. Use the 𝑘-value of
0.1303 for the year 1910. Why should there be no entry for the year 2010?
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Exercise 1.2.3 Malthus’ equation only admits one value of 𝑘. What is the
best value we should adopt for our model? Justify your methods and reasons
for deciding upon your value of 𝑘. Would the value 𝑘 = 0.1316 be appropriate?
Can you determine what computations led to that value?

Let us assume 𝑘 = 0.1316. Then Malthus’ equation for the pop-
ulation of Georgia is 𝑃′ = 0.1316𝑃. This equation describes a rate of
change; that is, this equation tells us how much to add (𝑃′) to the
present value (𝑃 in 1900) to get the next value (𝑃 in 1910).

Year Actual Estimated
(millions) (millions)

1910 2.609 2.508
1920 2.896 2.838
1930 2.909 3.211
1940 3.124 3.634
1950 3.445 4.112
1960 3.943 4.653
1970 4.590 5.265
1980 5.463 5.958
1990 6.478 6.742
2000 8.186 7.630
2010 9.688 8.634

Table 1.2 – Actual and modeled
population of Georgia.

We have that the change in population is 0.1316 times the
population. Hence, if the population in 1900 is 2.216million,
we can approximate the population in 1910 by computing

0.1316 × 2.216 = 0.292

and then adding that to the population in 1900:

2.216 + 0.292 = 2.508 million.

To approximate the population in 1920, we repeat the pro-
cess, but this time using the population in 1910.
Note that the calculated population for 1910 does not

agree with the given population in 1910. In fact, Table 1.2
gives the actual population and the population as determined
by the model.
None of the estimated and actual numbers agree! But

that’s to be expected. After all, Malthus’ equation is only
a model of a real-world situation. This data is still useful,

however, because one can readily approximate the answer to the
original question: What will be the population of Georgia in the year
2030?
Notice that we cannot use the population in 2020 since we do not

have that data available. Hence, we must approximate the population
in 2020, and then use that approximation to estimate the population in
2030.
We compute:

(9.688 × 0.1316) + 9.688 = 10.963 million in 2020, and (1.1)
(10.963 × 0.1316) + 10.963 = 12.406 million in 2030. (1.2)

We pause briefly to clarify some rate concepts. Earlier, we used the
symmetric difference to compute a rate of change during the year 1910.
In effect, we have estimated the instantaneous rate of change of the
population in 1910. The instantaneous rate of change is the concept
described by a given rate equation.
For instance, if we are given the rate equation 𝑃′ = 0.2𝑃, where

𝑃 is a population, then given any value of 𝑃 we can compute the
instantaneous rate of change at that value of 𝑃. Notice that this is not an
average rate of change, but the change exactly at the given value of 𝑃.
Hence, we can safely talk about the the change at a point, instead of

the change around a point.



§1.3 constrained growth 7

Problems for Section 1.2

1 Notice that the population of Georgia rises dramat-
ically in the second half of the 20th century. Let
us compute a new value of 𝑘 by averaging the five
intermediate 𝑘-values in your table from 1960 to
2000. Use this new 𝑘 to make a new prediction of
the population of Georgia in 2030. Is this a better
prediction than 12.239 million? How do you know?

2 If the more recent data is more relevant, then the
newest data should be the best! Compute the slope
between the data points for the years 2000 and 2010,
and let this be the value of 𝑃′ so that the value of 𝑘
can be found. Make another prediction of the pop-
ulation in 2030. Is this a better prediction? Justify
your answer.

3 The Government of the State of Georgia projects a
population in Georgia of 12.189 million in 2020 and
14.688 million in 2030. Experiment with your cal-
culator to determine a value of 𝑘 that could arrive
at these predictions.

4 Is it possible to predict the population of Georgia
in the year 2025? Either explain why it cannot be
done, or give a method for doing so.

5 Below is the population data for Gwinnett County,
Georgia. Find an appropriate value of 𝑘 for
Malthus’ equation thatmodels the growth of Gwin-

nett County. Is the value of 𝑘 for Gwinnett County
larger or smaller than the value of 𝑘 for the state of
Georgia? What does this imply about the growth
of Gwinnett County? Predict the population of
Gwinnett County in the year 2030.

6 Either by hand or with a calculator, plot the popula-
tion data for Gwinnett County shown below. (You
may want to convert the years to a more resonable
scale; for instance, 1940 to 0, 1950 to 1, etc.) What
curve does the data resemble? Malthus’ equation
is more commonly referred to as the exponential
growth equation—does this make sense based on
the data?

Population of Gwinnett County

Year Population
(thousands)

1940 29.1
1950 32.3
1960 43.5
1970 72.3
1980 166.9
1990 352.9
2000 588.4
2010 805.3

1.3 Constrained Growth

Our population and our use of the finite resources of planet Earth are growing exponentially, along with our technical
ability to change the environment for good or ill.

— Stephen Hawking

The equation in Section 1.2 is not the best model to use for popula-
tion. As Malthus himself pointed out, the food supply will not support
the growth of the human population. So what happens when the food
supply runs out? The resources will not be able to support unlimited
population growth, and the growth rate will slow to a crawl, or “level
off.” Amodel to account for this type of constrained growth was first
introduced by Pierre-FrancoisVerhulst (1804-1849), but it was not until
Swedish biologist TorCarlsonused real data to develop amathematiocal
model in 1913 that constrained growth was taken seriously.
How can Malthus’ equation be modified to produce a new con-

strained growth rate equation? Since the population 𝑃 must level off,
this implies that the rate of population growth𝑃′must decrease towards
zero. There must also be a maximum sustainable population; let us
call this maximum sustainable population 𝑀. (𝑀 is also called the
carrying capacity of the population.) The closer 𝑃 is to𝑀, the closer
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the Chain Rules.

𝑦 = 𝑥2 arctan(3𝑥 − 1)
𝑑𝑦

𝑑𝑥
= 2𝑥 · arctan(3𝑥 − 1) + 𝑥2 ·

3
9𝑥2 − 6𝑥 + 2

= 2𝑥 arctan(3𝑥 − 1) +
3𝑥2

9𝑥2 − 6𝑥 + 2
,

where we have the 3 produced by the Chain Rule. �

Example 3.4.9
We find the derivative of 𝑦 = 7 arcsec

(
𝑥2

)
. We have

𝑦 = 7 arcsec
(
𝑥2

)
𝑑𝑦

𝑑𝑥
= 7 ·

1

𝑥2


√(
𝑥2

)2
− 1

· (2𝑥) =
14𝑥

𝑥2

√𝑥4 − 1 =

14
|𝑥 |

√
𝑥4 − 1

as the derivative. �

Problems for Section 3.4

Evaluate each of the following expressions. Do not
use a calculator.

1 sin−1
(
−
√
3
2

)

2 tan−1
(
−
√
3
)

3 sin(arctan(1))

4 tan(sec−1 (2))

5 sin(arcsin(0.3))

6 arcsin(sin(𝜋))

7 arccos
(
cos

(
−𝜋4

) )

Find the derivatives of the following functions.

8 𝑦 = sec−1 (5𝑥)

9 𝑦 = cos−1 (2𝑥 − 3)

10 𝑦 = arctan(2𝑥 − 3)

11 𝑦 = arcsec
(
3𝑥2

)

12 𝑦 = tan−1
(
3
𝑥

)

13 𝑦 = arccos
(
1
𝑥

)

14 𝑦 = 2 sin−1
√
1 − 2𝑥2

15 𝑦 = arcsin(1 − 𝑥)

16 Which of the following are undefined?

arccos(1.5), arcsec(1.5), arctan(1.5),
arcsec(0.3), arcsin(2.4).

17 This problem is an application of the ExtremeValue
Theorem.

(a) Since 𝑦 = arcsin(𝑥) is defined only on [−1, 1],
we can find the extrema by examining the
graph. What are the extreme points?

(b) What are the extreme points of 𝑦 = arcsec(𝑥)?
Are they local or global?

(c) What are the extreme points of 𝑦 = arctan(𝑥)?

18 Find the derivative of 𝑦 = 4 arctan(𝑥). What is the
equation of the tangent line when 𝑥 = 1?

3.5 More Value of Theorems

Don’t just read it; fight it! Ask your own questions, look for your own examples, discover your own proofs. Is the hypothesis
necessary? Is the converse true? What happens in the classical special case? What about the degenerate cases? Where does

the proof use the hypothesis?
— Jacques Hadamard

We know that a function such as 𝑓(𝑥) = 7 has a derivative of zero.
We begin this section with a Lemma concerning this fact.
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LEMMA 3.A Let 𝑓(𝑥) be differentiable on (𝑎 , 𝑏). The function 𝑓(𝑥) is
constant on [𝑎 , 𝑏] if and only if 𝑓′(𝑥) = 0.

Proof. Assume 𝑓(𝑥) is constant on [𝑎 , 𝑏]. Then 𝑓(𝑥) = 𝑟 for all 𝑥 in
[𝑎 , 𝑏], where 𝑟 is some real number. Hence,

𝑓′(𝑥) = lim
Δ𝑥→0

𝑓(𝑥 + Δ𝑥) − 𝑓(𝑥)

Δ𝑥
= lim

Δ𝑥→0

𝑟 − 𝑟

Δ𝑥
= 0.

Next, assume 𝑓′(𝑥) = 0 on (𝑎 , 𝑏). Then 𝑓 is continuous on [𝑎 , 𝑏],
and we have

0 = lim
Δ𝑥→0

𝑓(𝑥 + Δ𝑥) − 𝑓(𝑥)

Δ𝑥

0 =
𝑓(𝑥 + Δ𝑥) − 𝑓(𝑥)

Δ𝑥
0 = 𝑓(𝑥 + Δ𝑥) − 𝑓(𝑥)

𝑓(𝑥) = 𝑓(𝑥 + Δ𝑥).

Since 𝑥 is an arbitrary point in (𝑎 , 𝑏), we have that all 𝑦-values are the
same; hence, 𝑓must be constant on [𝑎 , 𝑏]. �

Exercise 3.5.1 Draw coordinate axes and pick any two points on your graph
that have the same 𝑦-values and different 𝑥-values. Draw any differentiable
function betweeen your 2 points (make it as “curvy” as you wish, but make
sure it meets the qualifications). Does your function have a horizontal tangent
somewhere between your two points?

You may have difficulty drawing a differentiable function that
doesn’t have a horizontal tangent in the above exercise—simply because
it is not possible to do so! The proof of the theorem below explains why.The proof is adapted from

Apostol (1967).

THEOREM 3.B (Rolle’s Theorem) Let 𝑓(𝑥) be differentiable on (𝑎 , 𝑏)
and continuous on [𝑎 , 𝑏] where 𝑓(𝑎) = 𝑓(𝑏). Then there is some point 𝑐
in (𝑎 , 𝑏) such that 𝑓′(𝑐) = 0.

Proof. We will use the method of proof by contradiction. AssumeIn a proof by contradiction, we
assume the opposite of the
conclusion and show that this
leads to a contradiction of
known facts. The result is that
the opposite of the conclusion
must be false, and so the
conclusion must be true.

𝑓′(𝑥) ≠ 0 for every 𝑥 in (𝑎 , 𝑏).
By the Extreme Value Theorem, 𝑓 has a global maximum 𝑀 and

a global minimum 𝑚. Fermat’s Test indicates that neither extreme
value can be given by an 𝑥-value within (𝑎 , 𝑏) or else 𝑓′ is zero there;
hence, both extrema occur at the endpoints of the interval. But since
𝑓(𝑎) = 𝑓(𝑏), we have 𝑀 = 𝑚 and thus 𝑓 is constant on (𝑎 , 𝑏). By
Lemma 3.A, this implies 𝑓′(𝑥) = 0 everywhere on (𝑎 , 𝑏); thus, we
have a contradiction. Hence, there is at least one 𝑐 in (𝑎 , 𝑏) such that
𝑓′(𝑐) = 0. �

Example 3.5.2
Consider the function 𝑓(𝑥) = 𝑥4 − 2𝑥2 on the interval [−2, 2]. Since 𝑓(−2) =
𝑓(2) = 8, and 𝑓 is differentiable and continuous, we may apply Rolle’s
Theorem. The theorem tells us that there is a point in the interval [−2, 2] where
the derivative of 𝑓 is zero. We now find that point.
Since 𝑓′ (𝑥) = 4𝑥3 − 4𝑥 = 4𝑥

(
𝑥2 − 1

)
and we know that there is some point
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where 𝑓′ = 0, we set the derivative equal to zero and solve: 4𝑥
(
𝑥2 − 1

)
= 0

gives solutions 𝑥 = −1, 𝑥 = 0, and 𝑥 = 1. All of these are in the interval [−2, 2]
and so all of these points satisfy the conclusion of Rolle’s Theorem.
(Note that Rolle’s Theorem simply says that there is some point in the

interval where the derivative is zero; there could be multiple points where the
derivative is zero, as this example illustrates.) �

Over any interval, must it be true that the slope between the
endpoints of the interval is equal to the derivative of a differentiable
function within the interval? Suprisingly, this answer is yes, and it is
due to the Mean Value Theorem.The Mean Value Theorem is

another one of those Big
Important Theorems! THEOREM 3.C (The Mean Value Theorem) Let 𝑓 be a function con-

tinuous on [𝑎 , 𝑏] and differentiable on (𝑎 , 𝑏). Then, for some 𝑐 in
(𝑎 , 𝑏),

𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎
= 𝑓′(𝑐)

provided 𝑏 ≠ 𝑎 .

Proof. We note that the quantity

𝑘 =
𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎

is constant since it depends only on the real constants 𝑎 and 𝑏. We
introduce the function 𝑃(𝑥) = 𝑓(𝑥) − 𝑘𝑥 on [𝑎 , 𝑏], where 𝑘 is defined
above. Then we have

𝑃(𝑥) = 𝑓(𝑥)−𝑘𝑥 = 𝑓(𝑥)−
𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎
𝑥 =

𝑓(𝑥) [𝑏 − 𝑎] − 𝑥[𝑓(𝑏) − 𝑓(𝑎)]

𝑏 − 𝑎

so that

𝑃(𝑎) = 𝑓(𝑎) − 𝑘𝑎 =
𝑓(𝑎) [𝑏 − 𝑎] − 𝑎 [𝑓(𝑏) − 𝑓(𝑎)]

𝑏 − 𝑎
=
𝑏𝑓(𝑎) − 𝑎𝑓(𝑏)

𝑏 − 𝑎

and

𝑃(𝑏) = 𝑓(𝑏) − 𝑘𝑏 =
𝑓(𝑏) [𝑏 − 𝑎] − 𝑏[𝑓(𝑏) − 𝑓(𝑎)]

𝑏 − 𝑎
=
−𝑎𝑓(𝑏) + 𝑏𝑓(𝑎)

𝑏 − 𝑎

implying that 𝑃(𝑎) = 𝑃(𝑏). Hence, we may apply Rolle’s Theorem.
Therefore, there exists a point 𝑐 in (𝑎 , 𝑏) such that 𝑃′(𝑐) = 0. We have

𝑃′(𝑐) = 𝑓′(𝑐) − 𝑘 = 0
𝑓′(𝑐) = 𝑘

𝑓′(𝑐) =
𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎

which proves the theorem. �Some consider Rolle’s Theorem
as a special case of the MVT. But
it isn’t really: did you notice we
needed Rolle to prove the MVT?

This is called the Mean Value Theorem for a reason. Geometrically,
we recognize the left side as the slope of the secant line between the
points (𝑎 ,𝑓(𝑎)) and (𝑏,𝑓(𝑏)). The theorem then says that the slope of
the secant must be equal to the slope of the tangent to the curve at a
point somewhere between 𝑥 = 𝑎 and 𝑥 = 𝑏. See Figure 3.6.
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𝑥

𝑦

𝑎 𝑏𝑐
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�

Figure 3.6 – Demonstrating the Mean Value Theorem. The secant line over
[𝑎 , 𝑏] has the same slope as the tangent line at 𝑥 = 𝑐

This should make some intuitive sense: If you averaged 50 mph on
a trip in your car, then there would be at least one instant during your
trip when your speed was exactly 50 mph. In other words, the average
rate of change is equal to the instantaneous rate of change at some
point.
Notice that theMeanValue Theorem is another “existence theorem”

– we know a point 𝑐 exists, but we are given no method to find it.
Fortunately, finding the value of 𝑐 is not that difficult!Well, it depdends on how

complicated the derivative is. . .

Example 3.5.3
Let us find the appropriate value of 𝑐 given by the Mean Value Theorem for the
function 𝑓(𝑥) = 4𝑥2 − 𝑥 − 6 on [1, 3].
First, we compute the slope of the secant:

𝑓(3) − 𝑓(1)
3 − 1

=
27 + 3
2

= 15.

Next, we find that 𝑓′(𝑥) = 8𝑥 − 1. Thus we take the secant slope (15), set it
equal to the tangent slope (8𝑥− 1) and solve to get 8𝑥− 1 = 15, or 𝑥 = 2. Thus, 2
is the value of 𝑐 guaranteed to exist according to the Mean Value Theorem. �

Exercise 3.5.4 Find the value of 𝑐 guaranteed to exist by the Mean Value
Theorem for the function 𝑓(𝑥) = 𝑥 + cos(𝑥) over the interval

[
0, 𝜋2

]
.

Exercise 3.5.5 Let 𝑎 be a positive real number. Explain why theMean Value
Theorem cannot be used on the function 𝑔(𝑥) = 3√𝑥 over the interval [−𝑎 , 𝑎].

The Mean Value Theorem may be expressed in a different form.
Consider multiplying both sides of

𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎
= 𝑓′(𝑐)

by 𝑏 − 𝑎 . Then we may write

𝑓(𝑏) − 𝑓(𝑎) = 𝑓′(𝑐) (𝑏 − 𝑎).

Now add 𝑓(𝑎) to both sides to get

𝑓(𝑏) = 𝑓(𝑎) + 𝑓′(𝑐) (𝑏 − 𝑎).

Since 𝑏 − 𝑎 is the change in 𝑥-values, and 𝑓′(𝑐) is the slope, we have yet
again an expression for a tangent line.
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Problems for Section 3.5

1 Explain why the Mean Value Theorem does not
apply to the function 𝑦 = |𝑥 | on any interval that
includes zero.

In the following, verify the three conditions required
by Rolle’s Theorem and then find a suitable number 𝑐
guaranteed to exist by Rolle’s Theorem.

2 𝑓(𝑥) = 2𝑥2 − 11𝑥 + 15 on
[ 5
2 , 3

]
3 𝑔(𝑥) = 𝑥3 + 5𝑥2 − 𝑥 − 5 on [−5,−1]
4 𝑝(𝑥) = 4𝑥4/3 − 6𝑥1/3 on [0, 6]

5 𝑘(𝑥) =
𝑥2 − 4
𝑥2 + 4

on [−2, 2]

In the following problems, verify the two conditions
required by the Mean Value Theorem and then find
a suitable number 𝑐 guaranteed to exist by the Mean
Value Theorem.

6 𝑓(𝑥) = 4𝑥2 − 𝑥 − 6 on [0, 2]

7 𝑔(𝑥) =
𝑥 − 1
𝑥 + 2

on [0, 2]

8 𝑝(𝑥) = 3𝑥2/3 − 2𝑥 on [0, 1]
9 𝑘(𝑥) = 𝑥4 − 3𝑥 on [1, 3]
10 The function

𝑓(𝑥) =

{
𝑥 0 ≤ 𝑥 < 1
0 𝑥 = 1

is zero at 𝑥 = 0 and 𝑥 = 1, and differentiable on
(0, 1), but its derivative on (0, 1) is never zero.
Doesn’t this contradict Rolle’s Theorem?

(Finney et al., 2001, p. 261)

11 Define a function 𝑓 as follows:

𝑓(𝑥) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3 − 𝑥2

2
𝑥 ≤ 1

1
𝑥

𝑥 ≥ 1.

(a) Sketch the graph of 𝑓(𝑥) in the interval [0, 2].

(b) Show that 𝑓 satisfies the conditions required
by the Mean Value Theorem over the interval
[0, 2], and determine the values of 𝑐 guaran-
teed to exist by the Mean Value Theorem.

(Apostol, 1967, p. 186)

12 A trucker was cited for speeding on a toll road with
speed limit 70 mph. He argued to the judge that
he wasn’t speeding. He handed in his ticket from a
toll booth showing that in 3 hours he had covered
219 miles on the toll road. Determine whether the
trucker was actually speeding.

13 Let 𝑓(𝑥) = 1 − 𝑥2/3. Show that 𝑓(1) = 𝑓(−1) = 0,
but that 𝑓′ (𝑥) ≠ 0 in the interval [−1, 1]. Explain
how this is possible, in view of Rolle’s Theorem.

(Apostol, 1967, p. 186)

14 To save up for a car, you take a job working 10
hours a week at the library. For the first six weeks,
the library pays you $8 an hour. After that, you
earn $11.50 an hour. You put all the money you
earn each week in a savings account. On the day
you start work your savings account already holds
$200. Let 𝑆 (𝑡) be the function that describes the
amount in your savings account 𝑡 weeks after your
library job begins.

(a) Find the values 𝑆 (3), 𝑆 (6), 𝑆 (8), 𝑆 ′(3), 𝑆 ′(6),
and 𝑆 ′(8), if possible, and describe theirmean-
ing in practical terms. If it is not possible to
find one or more of these values, explain why.

(b) Write an equation for the function 𝑆 (𝑡). Be
sure that your equation correctly produces the
values you calculated in part (a).

(c) Sketch a labeled graph of 𝑆 (𝑡). By looking at
the graph, determine whether 𝑆 (𝑡) is contin-
uous and whether it is differentiable. Explain
the practical significance of your answers.

(d) Show algebraically that 𝑆 (𝑡) is continuous but
not differentiable.

(Taalman and Kohn, 2014, p. 186)

3.6 l’Hôspital’s Rule

Aman is like a fraction whose numerator is what he is and whose denominator is what he thinks of himself. The larger the
denominator, the smaller the fraction.

— Leo Tolstoy

In the previous chapter, we discovered the values of the following
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contained 25,000 gallons of oil, approximately
how manymore hours will elapse in the worst
case before all the oil has spilled? In the best
case? (Finney et al., 2001, p. 362)

5 Assume the following function 𝑓 is a decreasing
continuous function on the interval 0 ≤ 𝑥 ≤ 4 and
that the following is a table showing some function
values.

𝑥 0 1 1.5 3 4

𝑓(𝑥) 4 3 2 1.5 1

(a) Use the trapezoid rule to approximate the area
under 𝑓. (Be careful! The subintervals are not

all the same width!)
(b) Is your answer to part (a) larger or smaller
than the actual area under 𝑓? How do you
know?

6 Consider the area under 𝑦 = 5 over the interval
−10 ≤ 𝑥 ≤ 10.

(a) Sketch the region and find the area using a
basic geometry area formula.

(b) Use the trapezoid rule on 5 equal subintervals
and compare this with the answer from part
(a). Does this result make sense? Why or why
not?

4.4 Definite Integrals

Success and failure have much in common that is good. Both mean you’re trying.
— Frank Tyger

As we have seen, Riemann sums provide an approximation to the
area under a curve, and the smaller the subinterval width, the more
rectangles are used, and the better our approximation becomes. In
this section, we will explore this idea of using more and rectangles
(on smaller and smaller subintervals) to determine exact areas under
certain curves. To facilitate this, we need new symbolism to represent
the exact area under 𝑓.

The exact area under a bounded function 𝑓(𝑥) on the interval [𝑎 , 𝑏]
is denoted by ∫ 𝑏

𝑎
𝑓(𝑥) 𝑑𝑥.

The symbol
∫ 𝑏

𝑎
is called the definite integral from 𝑎 to 𝑏.

𝑥

𝑦

4

𝑓(𝑥) = 𝑥

For example, using basic geometry, it is easy to determine the exact
area under the function 𝑓(𝑥) = 𝑥 from 0 to 4. Since the area is that of a
right triangle of base 4 and height 4, we see that the exact area must be
1
2 (4) (4) = 8. Hence, we say that the definite integral is equal to 8 or, in
symbols, ∫ 4

0
𝑓(𝑥) 𝑑𝑥 =

∫ 4

0
𝑥 𝑑𝑥 = 8.

Previously, in Section 4.2, we spent some time discussing the fact
that areas can be found under bounded functions. We clarify this
discussion of exact areas (definite integrals) with an additional fact
concerning such functions.
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THEOREM 4.F Let 𝑓 be an increasing bounded function on the interval
[𝑎 , 𝑏]. Let 𝐴 be any number that satisfies

Δ𝑥
𝑛−1∑
𝑘=0

𝑓(𝑥𝑘) < 𝐴 < Δ𝑥
𝑛∑
𝑘=1

𝑓(𝑥𝑘)

for every integer 𝑛 > 1. Then 𝐴 =
∫ 𝑏

𝑎
𝑓 𝑑𝑥 as 𝑛 → ∞.

Proof. The series above are nothing more than the definitions of lrsNote that there is a similar
statement for decreasing
bounded functions. As the
argument is very similar, we will
omit the proof for decreasing
bounded functions.

and rrs, respectively. We already know that these are approximations,
so there must be some number 𝐴 such that lrs < 𝐴 < rrs. By the
definition of a definite integral, we know that

∫ 𝑏

𝑎
𝑓 𝑑𝑥 satisfies the same

inequalities as 𝐴. So we must prove that 𝐴 is the definite integral.
We begin by finding the difference between the left and right Riemann
sums.

rrs − lrs = Δ𝑥
𝑛∑
𝑘=1

𝑓(𝑥𝑘) − Δ𝑥
𝑛−1∑
𝑘=0

𝑓(𝑥𝑘)

= Δ𝑥

(
𝑛∑
𝑘=1

𝑓(𝑥𝑘) −
𝑛−1∑
𝑘=0

𝑓(𝑥𝑘)

)

= Δ𝑥

(
𝑛−1∑
𝑘=1

𝑓(𝑥𝑘) + 𝑓(𝑥𝑛) −

[
𝑓(𝑥0) +

𝑛−1∑
𝑘=1

𝑓(𝑥𝑘)

])

= Δ𝑥

(
𝑓(𝑥𝑛) − 𝑓(𝑥0) +

𝑛−1∑
𝑘=1

𝑓(𝑥𝑘) −
𝑛−1∑
𝑘=1

𝑓(𝑥𝑘)

)

= Δ𝑥(𝑓(𝑥𝑛) − 𝑓(𝑥0))

=
𝑏 − 𝑎

𝑛
(𝑓(𝑏) − 𝑓(𝑎))

which we can write as

rrs − lrs =
𝑘

𝑛

where 𝑘 = (𝑏 − 𝑎) (𝑓(𝑏) − 𝑓(𝑎)) is constant since it only depends on
constants 𝑎 and 𝑏. Clearly, the difference between the left and right
Riemann sums must be greater than the difference between 𝐴 and the
definite integral, since each of these is between the Riemann sums.
Then

0 ≤




𝐴 −

∫ 𝑏

𝑎
𝑓 𝑑𝑥





 ≤ 𝑘

𝑛

for every 𝑛 > 1. Letting 𝑛 → ∞, we see that 𝑘
𝑛 → 0, so that this

inequality approaches the equality𝐴−
∫ 𝑏

𝑎
𝑓 𝑑𝑥 = 0, or𝐴 =

∫ 𝑏

𝑎
𝑓 𝑑𝑥. �

𝑥

𝑦

𝑏

𝑓(𝑥) = 𝑥

The preceeding proof gives us an indication as to how to compute
the definite integral. Let us re-do the previous example. This time, we
want the area from 0 to any number 𝑏.
Again, using basic geometry, we may determine the exact area

under the function 𝑓(𝑥) = 𝑥 from 0 to 𝑏. The area is that of a right
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triangle of base 𝑏 and height 𝑏, so the exact areamust be 12 (𝑏) (𝑏) =
1
2𝑏
2.

Hence,
∫ 𝑏

0
𝑓(𝑥) 𝑑𝑥 =

∫ 𝑏

0
𝑥 𝑑𝑥 =

𝑏2

2
.

But how can we determine the exact area under the standard
parabola 𝑓(𝑥) = 𝑥2 over the interval [0, 𝑏]? For this, we rely on the
previous theorem and the formulas for sum of powers of integers from
Section 4.1. We will use a Riemann sum and find its limit as 𝑛 → ∞.
We wish to use 𝑛 equal subintervals. Since the interval [0, 𝑏] has

length 𝑏 − 0 = 𝑏, each subinterval has length

Δ𝑥 =
𝑏 − 0
𝑛

=
𝑏

𝑛
.

Since the theorem guarantees that the answer is the same whether
we use a left-hand or right-hand Riemann sum, we can choose
whichever one we want; let us choose a right-hand sum. Hence,
the 𝑥-coordinates we use are the right-hand endpoints of the subinter-
vals [0,Δ𝑥], [Δ𝑥, 2Δ𝑥], [2Δ𝑥, 3Δ𝑥], and so on, up to [(𝑛 − 1)Δ𝑥, 𝑛Δ𝑥].
We can represent each right-hand endpoint as 𝑥𝑘 = 𝑘Δ𝑥 = 𝑘𝑏/𝑛 for
𝑘 = 1, 2, 3, . . . , 𝑛. Thus, we see that

∫ 𝑏

0
𝑥2 𝑑𝑥 = lim

𝑛→∞

𝑛∑
𝑘=1

𝑥2𝑘Δ𝑥 = lim
𝑛→∞

𝑛∑
𝑘=1

(
𝑘𝑏

𝑛

)2 (
𝑏

𝑛

)
.

Nowwe expand this sum, and take the limit.

∫ 𝑏

0
𝑥2 𝑑𝑥 = lim

𝑛→∞

𝑛∑
𝑘=1

(
𝑘𝑏

𝑛

)2 (
𝑏

𝑛

)
= lim
𝑛→∞

𝑛∑
𝑘=1

(
𝑘2𝑏2

𝑛2
·
𝑏

𝑛

)

= lim
𝑛→∞

𝑛∑
𝑘=1

(
𝑘2𝑏3

𝑛3

)
= lim
𝑛→∞

𝑏3

𝑛3

𝑛∑
𝑘=1

𝑘2

= lim
𝑛→∞

𝑏3

𝑛3

(
𝑛(𝑛 + 1) (2𝑛 + 1)

6

)
= lim
𝑛→∞

𝑏3
(
2𝑛3 + 3𝑛2 + 𝑛

)
6𝑛3

= lim
𝑛→∞

𝑏3 · 2𝑛3

6𝑛3
=
2𝑏3

6
=
𝑏3

3
.

Hence, we find that

∫ 𝑏

0
𝑥2 𝑑𝑥 =

𝑏3

3
.

Exercise 4.4.1 Compute
∫ 4

0
𝑥2 𝑑𝑥.

We may use a similar procedure to find the area under 𝑓(𝑥) = 𝑥3
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over the interval [0, 𝑏]. We have
∫ 𝑏

0
𝑥3 𝑑𝑥 = lim

𝑛→∞

𝑛∑
𝑘=1

(
𝑘𝑏

𝑛

)3 (
𝑏

𝑛

)
= lim
𝑛→∞

𝑛∑
𝑘=1

(
𝑘3𝑏3

𝑛3
·
𝑏

𝑛

)

= lim
𝑛→∞

𝑛∑
𝑘=1

(
𝑘3𝑏4

𝑛4

)
= lim
𝑛→∞

𝑏4

𝑛4

𝑛∑
𝑘=1

𝑘3

= lim
𝑛→∞

𝑏4

𝑛4

(
𝑛(𝑛 + 1)
2

)2
= lim
𝑛→∞

𝑏4
(
𝑛4 + 2𝑛3 + 𝑛2

)
4𝑛4

= lim
𝑛→∞

𝑏4 · 𝑛4

4𝑛4
=
𝑏4

4
.

By now, you should see a relationship between the function underIf you are thinking that the area
under 𝑥4 over [0, 𝑏] is 𝑏5/5, you
are correct!

which we want the area, and the area. As this applies to power
functions, we will prove the the following theorem, which establishes
the relationship.

THEOREM 4.G (Definite Integral of Power Functions) If 𝑝 is a positive
integer and 𝑏 > 0, then

∫ 𝑏

0
𝑥𝑝 𝑑𝑥 =

𝑏𝑝+1

𝑝 + 1
.

Proof. We begin with the restatement of an algebraic fact for integer
𝑝 ≥ 1:

𝑎𝑝 − 𝑏𝑝 = (𝑎 − 𝑏)
(
𝑎𝑝−1 + 𝑎𝑝−2𝑏 + 𝑎𝑝−3𝑏2 + · · · + 𝑎𝑏𝑝−2 + 𝑏𝑝−1

)
,

where there are exactly 𝑝 terms in the rightmost parentheses. Let
𝑎 = 𝑛+1 and 𝑏 = 𝑛 in the identity above. Then, since 𝑎−𝑏 = 𝑛+1−𝑛 = 1,
we have, for any positive integer 𝑛 ≥ 1,

(𝑛 + 1)𝑝+1 − 𝑛𝑝+1 = (𝑛 + 1)𝑝 + (𝑛 + 1)𝑝−1𝑛 + · · · + (𝑛 + 1)𝑛𝑝−1 + 𝑛𝑝

< (𝑛 + 1)𝑝 + (𝑛 + 1)𝑝−1(𝑛 + 1) + · · ·

+ (𝑛 + 1) (𝑛 + 1)𝑝−1 + (𝑛 + 1)𝑝

= (𝑛 + 1)𝑝 + (𝑛 + 1)𝑝 + · · · + (𝑛 + 1)𝑝 + (𝑛 + 1)𝑝

= (𝑝 + 1) (𝑛 + 1)𝑝.

Similarly, we find that (𝑛 + 1)𝑝+1 − 𝑛𝑝+1 > (𝑝 + 1)𝑛𝑝. Hence,

𝑛𝑝 <
(𝑛 + 1)𝑝+1 − 𝑛𝑝+1

𝑝 + 1
< (𝑛 + 1)𝑝.

Now let 𝑛 run from all integer values from 0 to some positive integer 𝑘,
and add up each term on all sides of the inequality. We get

0𝑝 + 1𝑝 + · · · + 𝑘𝑝 <
(𝑘 + 1)𝑝+1 − 𝑘𝑝+1 + 𝑘𝑝+1 − (𝑘 − 1)𝑝+1 + · · · + 1𝑝+1 − 0𝑝+1

𝑝 + 1
< 1𝑝 + 2𝑝 + · · · + (𝑘 + 1)𝑝

which simplifies to
𝑘∑
𝑛=1

𝑛𝑝 <
(𝑘 + 1)𝑝+1

𝑝 + 1
<

𝑘+1∑
𝑛=1

𝑛𝑝.
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Changing indicies slightly, we get the more useful form

𝑘−1∑
𝑛=1

𝑛𝑝 <
𝑘𝑝+1

𝑝 + 1
<

𝑘∑
𝑛=1

𝑛𝑝

which holds for every positive integer 𝑛 ≥ 1 and every positive integer
𝑝 ≥ 1. Multiplication of these inequalities by 𝑏𝑝+1/𝑘𝑝+1 gives us

𝑏

𝑘

𝑘−1∑
𝑛=1

(
𝑛𝑏

𝑘

)𝑝
<

𝑏𝑝+1

𝑝 + 1
<
𝑏

𝑘

𝑘∑
𝑛=1

(
𝑛𝑏

𝑘

)𝑝
.

Letting 𝑓(𝑥) = 𝑥𝑝 , and 𝑥𝑛 = 𝑛𝑏/𝑘 for 𝑛 = 0, 1, 2, . . . , 𝑘, then these
inequalities become

𝑏

𝑘

𝑘−1∑
𝑛=1

𝑓(𝑥𝑛) <
𝑏𝑝+1

𝑝 + 1
<
𝑏

𝑘

𝑘∑
𝑛=1

𝑓(𝑥𝑛)

which are exactly the expressions for the left and right Riemann sums of
𝑥𝑝 on the interval [0, 𝑏]. Since 𝑓(𝑥) = 𝑥𝑝 is increasing on this interval,
we may apply Theorem 4.F. Thus,

∫ 𝑏

0
𝑥𝑝 𝑑𝑥 =

𝑏𝑝+1

𝑝 + 1
. �

Example 4.4.2
With this Theorem, we may calculate the following:

∫ 2

0
𝑥6 𝑑𝑥 =

27

7
=
128
7

.

In this manner, we have easily found the exact area under the curve 𝑦 = 𝑥6 on
the interval [0, 2] to be 1287 . �

Exercise 4.4.3 Compute
∫ 4

0
𝑥3 𝑑𝑥.

Finding the area over [0, 𝑏] is a step in the right direction, but we
want to make this definite integral as general as possible. So next we
find the area under 𝑓(𝑥) = 𝑥 over the interval [𝑎 , 𝑏].

𝑥

𝑦

𝑎 𝑏

𝑓(𝑥) = 𝑥

Again, using basic geometry, we may determine the exact area
under the function 𝑓(𝑥) = 𝑥 from 𝑎 to 𝑏. The area is that of a right
triangle of base 𝑏 and height 𝑏, with another right triangle of base 𝑎 and
height 𝑎 cut off from it. The exact area must then be 12𝑏

2 − 12𝑎
2. Hence,

∫ 𝑏

𝑎
𝑥 𝑑𝑥 =

𝑏2

2
−
𝑎2

2
.

Exercise 4.4.4 Compute
∫ 5

3
𝑥 𝑑𝑥.

Exercise 4.4.5 Conjecture the formula for
∫ 𝑏

𝑎
𝑥𝑝 𝑑𝑥.
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You may have been wondering about the significance of the differ-
ential 𝑑𝑥 in the expression for the definite integral. This can be thought
of as arising from the definition of Riemann sums for the area between
𝑓 and the 𝑥-axis.
Consider for instance the area under a function 𝑓(𝑥) over the

interval [𝑎 , 𝑏]. If we use rectangles to approximate the area, we must
split the interval up into 𝑛 subintervals. Thus the width of each one is
(𝑏 − 𝑎)/𝑛 = Δ𝑥, and the height of each one is given by 𝑓(𝑥∗), where
𝑥∗ may be the left endpoint, right endpoint, or midpoint of [𝑎 , 𝑏]
(actually, 𝑥∗ can be any point within the subinterval). Hence, the
area of any rectangle is height × width = 𝑓(𝑥∗)Δ𝑥. By using more and
more rectangles — that is, letting 𝑛 → ∞, which forces Δ𝑥 → 0 —
we arrive at infinitely many rectangles with height described by 𝑓(𝑥)
and with infinitely small widths now described by 𝑑𝑥 rather than Δ𝑥.
Symbolically,

lim
𝑛→∞

𝑛∑
𝑘=1

𝑓(𝑥∗𝑘)Δ𝑥 =
∫ 𝑏

𝑎
𝑓(𝑥) 𝑑𝑥.

Thus, as we pass to the infinite, the measurable quantity Δ𝑥 becomes
the infinitely small quantity 𝑑𝑥.

𝑥

𝑦

𝑓(𝑥∗)

Δ𝑥

𝑥∗

𝑎
+
𝑘Δ
𝑥

𝑎
+
(𝑘
+
1)Δ
𝑥

�

Figure 4.8 – The 𝑘th
rectangle in a Riemann sum.
The height of the rectangle
is determined by 𝑓(𝑥∗). The
width of the rectangle is
Δ𝑥 = (𝑏 − 𝑎)/𝑛, where 𝑛 is
the number of subintervals.
The left-hand side of the
rectangle is a distance of
𝑘Δ𝑥 from the right endpoint
𝑎 and the right-hand side is
𝑘Δ𝑥 + Δ𝑥 = (𝑘 + 1)Δ𝑥 from
𝑎 .

Example 4.4.6
Let us make the relationship between Riemann sums and definite integrals
more explicit. In this example, we will compute a definite integral using
Riemann sums as the number of subintervals goes to infinity.
Suppose we wish to compute

∫ 5
1 3𝑥

2 𝑑𝑥. By definition,

∫ 5

1
3𝑥2 𝑑𝑥 = lim

𝑛→∞

𝑛∑
𝑘=1
3(𝑥∗𝑘)

2Δ𝑥.

Since we need 𝑛 subintervals, we set Δ𝑥 = (5 − 1)/𝑛 = 4/𝑛. Choosing the right
hand endpoint of each subinterval gives us

𝑥∗𝑘 = 1 + 𝑘Δ𝑥 = 1 +
4𝑘
𝑛

so that

3(𝑥∗𝑘)
2 = 3

(
1 +
4𝑘
𝑛

)2
= 3

(
1 +
8𝑘
𝑛

+
16𝑘2

𝑛2

)
= 3 +

24𝑘
𝑛

+
48𝑘2

𝑛2
.

Now we are ready to evaluate the limit.
∫ 4

1
3𝑥2 𝑑𝑥 = lim

𝑛→∞

𝑛∑
𝑘=1
3(𝑥∗𝑘)

2Δ𝑥 = lim
𝑛→∞

𝑛∑
𝑘=1

(
3 +
24𝑘
𝑛

+
48𝑘2

𝑛2

) (
4
𝑛

)

= lim
𝑛→∞

(
𝑛∑
𝑘=1
3 +
24
𝑛

𝑛∑
𝑘=1

𝑘 +
48
𝑛2

𝑛∑
𝑘=1

𝑘2
) (
4
𝑛

)

= lim
𝑛→∞

(
3𝑛 +

24
𝑛

·
𝑛(𝑛 + 1)
2

+
48
𝑛2

·
𝑛(𝑛 + 1)(2𝑛 + 1)

6

) (
4
𝑛

)

= lim
𝑛→∞

(
12 +

48(𝑛 + 1)
𝑛

+
32(𝑛 + 1)(2𝑛 + 1)

𝑛2

)

= 12 + 48 + 64 = 124.

This agrees with the answer obtained from using the Power Rule. �
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It is also important to know how to reverse the process. That is,
given a Riemann sum, what is the definite integral the sum represents?

Example 4.4.7
We will find the definite integral represented by the Riemann sum

lim
𝑛→∞

𝑛∑
𝑖=1

(
2 +
3𝑖
𝑛

)3 3
𝑛
.

Note that the fraction on the end, 3/𝑛, must the the width of each
subinterval: Δ𝑥 = 3/𝑛. The interval over which we want the sum must then
have a total width of 3. The expression 2 + 3𝑖/𝑛 must be the 𝑥-coordinate;
hence, 𝑥∗𝑖 = 2 + 3𝑖/𝑛. In terms of Δ𝑥, this is 𝑥

∗
𝑖 = 2 + 𝑖Δ𝑥. This allows us to see

that 2 is must be the starting point of the definite integral. Since the width is 3,
the definite integral must be from 2 to 2 + 3 = 5. The summation can then be
written in terms of 𝑥-coordinates, and this gives us our integral.

lim
𝑛→∞

𝑛∑
𝑖=1

(
2 +
3𝑖
𝑛

)3 3
𝑛

= lim
𝑛→∞

𝑛∑
𝑖=1

(𝑥∗𝑖 )
3Δ𝑥 =

∫ 5

2
𝑥3 𝑑𝑥. �

Weclose this section by stating a useful property of definite integrals,
the proof of which is left as a problem.

THEOREM 4.H (The Linearity Property) Let 𝑓 and 𝑔 be bounded con-
tinuous functions on the interval [𝑎 , 𝑏]. Let 𝑘1 and 𝑘2 be real constants.
Then

∫ 𝑏

𝑎
[𝑘1𝑓(𝑥) + 𝑘2𝑔(𝑥)] 𝑑𝑥 = 𝑘1

∫ 𝑏

𝑎
𝑓(𝑥) 𝑑𝑥 + 𝑘2

∫ 𝑏

𝑎
𝑔(𝑥) 𝑑𝑥.

This is the property that allows us to find the area under any
polynomial. Consider a polynomial such as 𝑓(𝑥) = 3𝑥2 + 7𝑥 + 1. This
linearity property says thatwe canfind the area under𝑓(𝑥) = 3𝑥2+7𝑥+1
by finding the area under each of 𝑥2, 𝑥, and 1. Then multiply the area
under 𝑥2 by 3 and the area under 𝑥 by 7. Finally, add the areas under
3𝑥2, 7𝑥, and 1 together.
The following example illustrates this idea. We will compute the

area under a polynomial.

Example 4.4.8
Since areas may be added or subtracted from other areas, we can compute

∫ 2

0

(
𝑥3 + 5𝑥2 − 𝑥

)
𝑑𝑥 =

∫ 2

0
𝑥3 𝑑𝑥 + 5

∫ 2

0
𝑥2 𝑑𝑥 −

∫ 2

0
𝑥 𝑑𝑥

=
24

4
+ 5 ·

23

3
−
22

2

= 4 + 5 ·
8
3
− 2 =

52
3
.

Hence, we have a method to find the area under any polynomial! �
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Problems for Section 4.4

1 What is the area under the horizontal line 𝑦 = 5
over the interval [−2, 2]? What is

∫ 2
−2 5 𝑑𝑥? Make a

conjecture concerning the value of
∫ 𝑏
𝑎
𝐶 𝑑𝑥 where

𝐶 is any real constant.

2 Very often we use the evaluation notation to aid in
computing definite integrals. For instance, writ-
ing “𝑥2



3
2” indicates that we should evaluate 𝑥

2 at
𝑥 = 3 and at 𝑥 = 2, then compute the difference:
𝑥2



3
2 = 3

2 − 22 = 5. Thus, we see that Theorem 4.G
could be restated as

∫ 𝑏

0
𝑥𝑝 𝑑𝑥 =

𝑥𝑝+1

𝑝 + 1






𝑏

0
=
𝑏𝑝+1

𝑝 + 1
.

In practice, we would then write

∫ 2

1
𝑥5 𝑑𝑥 =

𝑥6

6






2

1
=
26

6
−
1
6
=
21
2
.

Use this notation to compute
∫ 4

2
(3𝑥2 − 𝑥 + 2) 𝑑𝑥.

3 Evaluate the following.

(a)
∫ 5

−1
(𝑥 + 2) 𝑑𝑥

(b)
∫ 7

1
𝑥 𝑑𝑥

(c)
∫ 8

2
(𝑥 − 1) 𝑑𝑥

(d)
∫ 12

6
(𝑥 − 5) 𝑑𝑥

(e)
∫ 7+𝑘

1+𝑘
(𝑥 − 𝑘) 𝑑𝑥 where 𝑘 is constant

(f) What do you notice about the answers to the
preceding problems? Why do you think this
is? Explain your answer in terms of area.

Evaluate the following definite integrals. Remem-
ber to use the properties of definite integrals when
possible.

4
∫ 2

−1

(
𝑥2 + 4𝑥 − 1

)
𝑑𝑥

5
∫ 4

2
(𝑥 − 1)(𝑥 + 2) 𝑑𝑥

6
∫ −1

−3

(
3𝑥2 + 2𝑥 + 1

)
𝑑𝑥

7
∫ 2

5
𝑥 𝑑𝑥

8
∫ 3/2

1/2
(4𝑥 − 6) 𝑑𝑥

9
∫ 1

0

(
𝑥10 − 8𝑥7 + 20

)
𝑑𝑥

10
∫ 1

−1
(2𝑥 − 1)(𝑥 + 1) 𝑑𝑥

11 Use the limit definition (as shown in Example 4.4.6)

to compute
∫ 7

3
2𝑥 𝑑𝑥.

Write each Riemann sum as a definite integral.

12 lim
𝑛→∞

𝑛∑
𝑖=1
6
(
3𝑖
𝑛

)
3
𝑛

13 lim
𝑛→∞

𝑛∑
𝑖=1

(
3𝑖
𝑛

)3 3
𝑛

14 lim
𝑛→∞

𝑛∑
𝑖=1

(
3𝑖
𝑛

) [(
3𝑖
𝑛

)
− 5

]
3
𝑛

15 lim
𝑛→∞

𝑛∑
𝑖=1

(
2 +
3𝑖
𝑛

)4 3
𝑛

16 lim
𝑛→∞

𝑛∑
𝑖=1

(
3𝑖
𝑛

)3 3
𝑛

17 lim
𝑛→∞

𝑛∑
𝑖=1

𝑖4

𝑛5

18 lim
𝑛→∞

𝑛∑
𝑖=1

𝑛

𝑛2 + 𝑖2

19 lim
𝑛→∞

𝑛∑
𝑖=1

𝑖3

𝑛4

20 lim
𝑛→∞

𝑛∑
𝑖=1

1
𝑛

√
𝑖

𝑛

21 lim
𝑛→∞

𝑛∑
𝑖=1

80𝑖
𝑛2
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6 Let 𝑅 be the region bounded by 𝑦 = e𝑥 , 𝑦 = 2, and
𝑥 = 0. Find the volume of the solid whose base
is bounded by the region 𝑅 and the cross sections
perpendicular to the 𝑥-axis are semicircles.

7 Let 𝑅 be the region bounded by 𝑦 = 𝑥2 and 𝑦 = 𝑥.
Find the volume of the solid whose base is bounded
by the region𝑅 and the cross sections perpendicular
to the 𝑥-axis are semicircles.

8 Let 𝑅 be the region bounded by 𝑦 = 1
16𝑥

2 and 𝑦 = 2.

Find the volume of the solid whose base is bounded
by the region𝑅 and the cross sections perpendicular
to the 𝑥-axis are rectangles whose height is twice
that of the side in the plane of the base.

9 Find the volume of the solid whose base is bounded
by the curve 𝑦 = 2

√
sin(𝑥), the lines 𝑥 = 0, 𝑥 = 𝜋,

and 𝑦 = 0, and the cross sections perpendicular to
the 𝑥-axis are squares.

6.7 Disks and Washers, or Volume Part 2

When we ask advice, we are usually looking for an accomplice.
— Joseph-Louis Lagrange

In this section we consider solids formed by revolving a plane about
an axis. We describe this procedure by establishing the known volume
formula for a cylinder, 𝑉 = 𝜋𝑟2ℎ.

radius

𝑦 = 𝑟

height

𝑦

𝑥

Figure 6.13 – A cylinder formed by revolving a
rectangle about the 𝑥-axis.

Consider the region in the coordinate plane
bounded by the line 𝑦 = 𝑟, for constant 𝑟, and the
𝑥-axis over the interval [0,ℎ], for constant ℎ. This
region is a rectangle of dimensions 𝑟 and ℎ. But rather
than treat this rectangle as a base for which we build
cross sections, we will revolve the rectangle about the
𝑥-axis to form a solid. This creates circular cross sec-
tions of radius 𝑟 with centers on the 𝑥-axis, as shown
in Figure 6.13.
Since each cross section is a circle, we sum all the

areas of all circles to find the volume over the entire
length of the solid (the interval [0,ℎ]). Hence, using
the same reasoning as in the previous section,

𝑉 =
∫ ℎ

0
𝜋𝑟2 𝑑𝑥 = 𝜋𝑟2𝑥




ℎ
0
= 𝜋𝑟2ℎ.

� �

𝑎 𝑏

𝑓(𝑥)

𝑦

𝑥

Figure 6.14 – The disk method in general.

Consider what we have done. We took a curve
𝑓(𝑥) (which in the case of the cylinder was simply
𝑓(𝑥) = 𝑟) which bounds a region with the 𝑥-axis over
an interval [𝑎 , 𝑏] (which in the case of the cylinder
was [0,ℎ]) and revolved the region around the 𝑥-axis,
thereby creating a solid.
By revolving, we create circular cross sections

whose radius is 𝑓(𝑥) since this is the distance from
the center to the edge of each cross section. So the
area of each cross section is

𝐴(𝑥) = 𝜋 [𝑓(𝑥)]2.

Integrating (or summing) all the circular cross
sections from 𝑥 = 𝑎 to 𝑥 = 𝑏, we have

𝑉 =
∫ 𝑏

𝑎
𝜋 [𝑓(𝑥)]2 𝑑𝑥 = 𝜋

∫ 𝑏

𝑎
[𝑓(𝑥)]2 𝑑𝑥.
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Figure 6.14 shows a solid formed by revolving a region bounded by
a general curve 𝑓(𝑥) over the interval [𝑎 , 𝑏]. The figure also shows
a typical circular cross section; note the radius of the cross section is
determined by the function 𝑓(𝑥).

Exercise 6.7.1 Establish the formula for the volume of a cone of radius 𝑟
and height ℎ using an appropriately situated region in the plane that is then
revolved about the 𝑥-axis.

We clarify the method with the following definition.

Given a region 𝑅 in the coordinate plane bounded by 𝑓(𝑥) and
the 𝑥-axis over the interval [𝑎 , 𝑏], then the volume of the solid
generated by revolving 𝑅 about the 𝑥-axis is given by

𝑉 = 𝜋
∫ 𝑏

𝑎
[𝑓(𝑥)]2 𝑑𝑥.

This method is called the disk method of finding volume.

1 2 3

1

2

3

4

𝑥

𝑦

𝑂

𝑅

Figure 6.15 – The region in
Example 6.7.2.

Example 6.7.2
Consider the region 𝑅 in the plane bounded by the curve 𝑓(𝑥) = 4𝑥−𝑥2 and the
𝑥-axis over the interval [1, 3]. This region is shown in Figure 6.15. Revolving
this region about the 𝑥-axis generates a solid with circular cross sections (or,
disks). Hence, the volume of the solid is

𝑉 = 𝜋
∫ 3

1
[𝑓(𝑥)]2 𝑑𝑥 = 𝜋

∫ 3

1

(
4𝑥 − 𝑥2

)2
𝑑𝑥

= 𝜋
∫ 3

1

(
16𝑥2 − 8𝑥3 + 𝑥4

)
𝑑𝑥 = 𝜋

(
16
3
𝑥3 − 2𝑥4 +

1
5
𝑥5

)


3
1

= 𝜋

(
144 − 162 +

243
5

)
− 𝜋

(
16
3

− 2 +
1
5

)
=
406𝜋
15

.

The calculator gives the approximate volume as 85.302. �

Example 6.7.3
Suppose the region 𝑅 is bounded by the curve 𝑦 = exp(𝑥) + 1 and the 𝑥-axis
over the interval [ln(2), ln(8)]. Revolving this region about the 𝑥-axis again
produces a solid with circular cross sections. Thus, the volume of this solid is

𝑉 = 𝜋
∫ ln(8)

ln(2)
[𝑓(𝑥)]2 𝑑𝑥 = 𝜋

∫ ln(8)

ln(2)

(
e𝑥 +1

)2 𝑑𝑥

= 𝜋
∫ ln(8)

ln(2)

(
e2𝑥 +2 e𝑥 +1

)
𝑑𝑥 = 𝜋

(
1
2
e2𝑥 +2 e𝑥 +𝑥

) 


ln(8)
ln(2)

= 𝜋

(
1
2
eln(64) +2 eln(8) + ln(8) − 2 − 4 − ln(2)

)
= 𝜋(42 + ln(4))

By the calculator, we have 136.302. �

Suppose we change the axis of revolution to something other than
the 𝑥-axis. This is what we do in the next example.

Example 6.7.4
The region𝑅 is boundedby𝑓(𝑥) = exp(𝑥) and the line 𝑦 = −1over [ln(2), ln(8)].
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It is revolved around the line 𝑦 = −1. How do we find the volume?
To calculate this volume, we recall that the lengths of the radii are needed.

By revolving around the line 𝑦 = −1, we are making the radii 1 unit longer than
if we had revolved around the line 𝑦 = 0. In Figure 6.17, we see the situation.
Note that the radii are no longer simply defined by the curve 𝑦 = e𝑥 . They are
now one unit longer: the radii are actually e𝑥 +1.
It is this “new” function we must integrate. The volume of this solid is

given by

𝑉 = 𝜋
∫ ln(8)

ln(2)

(
e𝑥 +1

)2 𝑑𝑥,
which is the same integral as in the previous example, so the volume is
𝜋(42 + ln(4)). �

𝑥

𝑦

2

8

ln(2) ln(8)

𝑦 = −1

𝑦 = e𝑥

𝑂

𝑅

Figure 6.16 – The region in
Example 6.7.4.

Exercise 6.7.5 The region 𝑅 is bounded by 𝑦 = 10 − 𝑥3 and the line 𝑦 = 2
over the interval [1, 2]. Find the volume of the solid generated by revolving 𝑅
about the line 𝑦 = 2.

Notice that we have thus far always bounded our regions with a
curve and a line, and the line has been the axis of revolution. What
happens if the axis of revolution is not the line that bounds the region?

𝑓(𝑥)

𝑔(𝑥)

1 2 3−1
−1

−2

−3

−4

1

2

3

4

𝑦

𝑥
𝑂

Figure 6.17 – The cross sections (left) and the resulting solid from Example
6.7.6 (right).

Example 6.7.6
The region 𝑅 is bounded by 𝑓(𝑥) = 4𝑥 − 𝑥2 and the line 𝑔(𝑥) = 3. It is revolved
about the 𝑥-axis. What is the volume of the resulting solid?
The solid created has a hole through the middle of it; in other words, it

is a doughnut-like shape. The shape of the outer edge is determined by the
parabola, while the shape of the “hole” is determined by the line. The solid is
shown in Figure 6.17.
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This causes us to consider the cross sections once more, because they are
not disks this time. Due to the hole, each cross section, while still circular, has
a circular hole in it. The cross sections are like rings (or like the washers one
uses with bolts and screws) and can be seen in Figure 6.17. The area of the cross
section is then the area of the larger circle minus the area of the inner circle
(the hole). Note that the radii of the circles are given by the distance from the
center to the outer and inner edges; these distances are given by the functions
𝑓 and 𝑔. Hence, the area formula is

𝐴(𝑥) = 𝜋[𝑓(𝑥)]2 − 𝜋[𝑔(𝑥)]2 = 𝜋
(
[𝑓(𝑥)]2 − [𝑔(𝑥)]2

)
.

By integrating 𝐴(𝑥) over the interval, we obtain the volume.
Back to the problem: Notice that we were not explicitly given an interval

over which to integrate. However, we can find it. The interval is given by the
𝑥-coordinates of the intersection points of 𝑓 and 𝑔. Setting 𝑓(𝑥) = 𝑔(𝑥) gives
4𝑥 −𝑥2 = 3 whose solutions are 1 and 3, from which we get an interval of [1, 3].
Thus, using the washer method, we get a volume of

𝑉 = 𝜋
∫ 3

1

(
[𝑓(𝑥)]2 − [𝑔(𝑥)]2

)
𝑑𝑥 = 𝜋

∫ 3

1

( [
4𝑥 − 𝑥2

]2
− 32

)
𝑑𝑥

= 𝜋
∫ 3

1

(
16𝑥2 − 8𝑥3 + 𝑥4 − 9

)
𝑑𝑥 = 𝜋

(
16
3
𝑥3 − 2𝑥4 +

1
5
𝑥5 − 9𝑥

)


3
1
=
136𝜋
15

,

or 28.484. �

The method used in the previous example has a name.

Given a region 𝑅 in the coordinate plane bounded above by 𝑓(𝑥)
and below by 𝑔(𝑥) over the interval [𝑎 , 𝑏], then the volume of the
solid generated by revolving 𝑅 about the 𝑥-axis is given by

𝑉 = 𝜋
∫ 𝑏

𝑎

(
[𝑓(𝑥)]2 − [𝑔(𝑥)]2

)
𝑑𝑥.

This method is called thewasher method of finding volume.

Next, we use this washer method again to find the volume of a solid
of revolution.

Example 6.7.7
The region 𝑅 is bounded by 𝑓(𝑥) = 8𝑥 − 𝑥2 and 𝑔(𝑥) = 𝑥2. Find the volume of
the solid generated as 𝑅 is revolved about the 𝑥-axis.
As in the previous example, we must find the intersection points so we

know what interval we are to integrate over. Setting 8𝑥 − 𝑥2 = 𝑥2 gives 𝑥 = 0
and 𝑥 = 4; hence the interval is [0, 4].
Note that the cross sections perpendicular to the axis of revolution (the

𝑥-axis in this case) are washers. This can be seen in Figure 6.18. Hence the
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volume is given by

𝑉 = 𝜋
∫ 4

0

( [
8𝑥 − 𝑥2

]2
−

[
𝑥2

]2)
𝑑𝑥

= 𝜋
∫ 4

0

(
64𝑥2 − 16𝑥3 + 𝑥4 − 𝑥4

)
𝑑𝑥

= 𝜋
∫ 4

0

(
64𝑥2 − 16𝑥3

)
𝑑𝑥

= 𝜋

(
64
3
𝑥3 − 4𝑥4

)


4
0
=
1024𝜋
3

or 1072.33. �4

16

-16

𝑦

𝑥
𝑂

Figure 6.18 – A solid
formed by revolving a region
bounded by two parabolas.

Finally, we look at an examplewherewe use the graphing calculator
to help us.

Example 6.7.8
Suppose the region 𝑅 is bounded by 𝑓(𝑥) = ln(𝑥), 𝑔(𝑥) = e−𝑥, and the line
𝑥 = 4. Find the volume of the solid generated by revolving 𝑅 about the line
𝑦 = 3. (See the figure below.)

𝑥

𝑦

e−𝑥 ln(𝑥)

𝑦 = 3

𝑥
=
4

𝑂

𝑅

1

2

1 2 3

To calculate the volume, we must first determine the length of the radii.
Since the region being revolved is not bounded by the axis of revolution, there
will be a hole created in the solid, and therefore we must determine the length
of the radii from the center to the inner and outer edges of the region.
Hence, the length of the radius to the outer edge of the region is equal to

the distance between the axis of revolution and the function. In this case, that
is 𝐺 (𝑥) = 3− e−𝑥. The distance from the axis of revolution to the inner function
is 𝐹 (𝑥) = 3 − ln(𝑥).
Next, we must find the interval. Using the calculator, we find the inter-

section point of Y1 = 3-eˆ(-X) and Y2 = 3-ln(X) to be X = 1.309799586.
Storing this as A so we may use it later (press X STO A), we set up the volume
integral.
This time, because the axis of revolution is above the region, 𝐺 is the outer

radius and 𝐹 is the inner radius. Hence, we need to integrate 𝐺2 − 𝐹2. The
volume integral is then

𝑉 = 𝜋
∫ 4

1.309799586

( [
3 − e−𝑥

]2
− [3 − ln(𝑥)]2

)
𝑑𝑥.

Using the calculator, we enter

𝜋*fnInt((Y1)ˆ2-(Y2)ˆ2,X,A,4)
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where we have the functions entered in Y1 and Y2, and A is the stored 𝑥-
coordinate of the intersection point. The calculator gives the approximation
34.391. �

Problems for Section 6.7

The region 𝑅 is bounded by the given curves and/or
lines. Find the volume of the solid generated by
revolving 𝑅 around the given axis. You may find
graphing the curves on your calculator useful.

1 𝑦 = cos(𝑥), 𝑦 = sin(𝑥), 𝑥 = 0, 𝑥 = 𝜋/4;
axis: 𝑥-axis

2 𝑦 = 1/
√
𝑥, 𝑥 = e, 𝑥 = e3, 𝑦 = 0; axis: 𝑥-axis

3 𝑦 = 3 − 𝑥2, 𝑦 = −1; axis: 𝑦 = −1

4 𝑦 = 16𝑥 − 4𝑥2, 𝑦 = 0; axis: 𝑦 = −20

5 𝑦 = (𝑥 + 3)3, 𝑦 = 0, 𝑥 = 2; axis: 𝑦 = −1

6 For the following problems, set up the required vol-
ume integral, then evaluate that integral on your
calculator.

(a) The region 𝑅 is bounded by the curve 𝑦 =
sin 𝑥 cos 𝑥 and the 𝑥-axis from 𝑥 = 0 to 𝑥 = 𝜋

2 .
Find the volume of the solid generated by
revolving 𝑅 about the 𝑥-axis.

(b) The region 𝑅 is bounded by the curve 𝑦 = e𝑥
and the lines 𝑦 = 2 and 𝑥 = −1. Find the
volume of the solid generated by revolving 𝑅
about the line 𝑦 = e.

(c) The region 𝑅 is bounded by the curve
16𝑦2 + 9𝑥2 = 144 and the line 4𝑦 = 3𝑥 + 12
in Quadrant II. Find the volume of the solid
generated by revolving 𝑅 about the 𝑥-axis.

7 (Calculator) Let 𝑅 be the region bounded by
the graph of 𝑓(𝑥) = e2𝑥−𝑥2 and the graph of
𝑔(𝑥) = sec(𝑥).

(a) Find the area of the region 𝑅.
(b) The region 𝑅 is revolved about the 𝑥-axis. Find
the volume of the resulting solid.

(c) The region 𝑅 is revolved about the line 𝑦 = 3.
Find the volume of the resulting solid.

(d) The region 𝑅 is the base of a solid whose
cross sections perpendicular to the 𝑥-axis are
squares. Find the volume of this solid.

6.8 Cylindrical Shells, or Volume Part 3

Anyone who cannot cope with mathematics is not fully human. At best he is a tolerable subhuman who has learned to
wear shoes, bathe, and not make messes in the house.

— Robert A. Heinlein

Youmay have noticedwhenwe discussed disks andwashers that we
never revolved our region about any vertical axis. It is to this problem
we now turn. Revolving a region around the 𝑦-axis can be done more
efficiently with a method other than disks or washers. (That is not to
say that it is impossible to use the disk andwashermethod. See problem
9 for instance.) To describe this newmethodwe compute the volume of
the solid generated by revolving around the 𝑦-axis the region bounded
by 𝑓(𝑥) = (𝑥 − 2)2 in the first quadrant.
Instead of creating circular cross sections as in the disk method, we

consider this solid built of many hollow cylinders, each inside another.
Figure 6.19 shows the region, the solid, and a few such “cylindrical
shells.” Although we are not using a cross section method, we still
compute volume by a sum; in this case, we sum all the cylindrical shells.The shell is just the outer

portion of a cylinder without a
top or bottom. You can think of
a cylindrical shell as the label on
a can of soup.

The thickness of each shell is infinitesimally small (as with the
disks). As such, it is as if the shells consist only of the surface of
a cylinder. The areas of the surfaces is what we sum. The area of
each surface is simply that of a rectangle—a rectangle that has been
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Chapter 8

INFINITE SERIES

Hundreds of years ago, mathematicians considered infinite se-
ries simply as polynomials with infinitely many terms. It was

therefore assumed that such “infinite polynomials” had the same
properties as finite polynomials, but they do not. The question of
convergencemust be considered. In this chapter, we attempt to answer
that question by introducing techniques for determining convergence
of certain kinds of infinite series. However, we will begin by extending
the tangent line concept to show how terms of a polynomial may be
used as an approximator to a function.

8.1 Approximating Polynomials

To admit error and cut losses is rare among individuals, unknown among states. States function only in terms of what
those in control perceive as power or personal ambition, and both of those wear blinkers.

— Barbara Tuchman, A Distant Mirror: The Calamitous 14th Century

Many applied problems cannot be solved exactly. This is why we
have approximation techniques like Riemann sums that allow us to
estimate answers. In this section, we use knowledge of the derivatives
of a function to arrive at an approximation of that function.

1 2−1−2

1

2

3

𝑥

𝑦

�

𝑂

Figure 8.1 – The graph of
𝑦 = 𝑥2 and a tangent line.

We will begin with investigating one-degree polynomial approxi-
mations to a function 𝑓(𝑥) at a point 𝑥 = 𝑎 ; in other words, we begin
with finding a line that approximates values near 𝑓(𝑎). Such a line we
have already discovered: it is the tangent line to 𝑓(𝑥) at 𝑥 = 𝑎 . Notice
that the tangent line and 𝑓 are equal when 𝑥 = 𝑎 , and for values of 𝑥
“close” to 𝑎 , the tangent line has values that are “close” to the function.
In Figure 8.1 we have the graph of 𝑓(𝑥) = 𝑥2 and the tangent line to 𝑓
at 𝑥 = 1

3 . By established methods, we can easily find the tangent line to
be

𝑔(𝑥) = 1
9 +

2
3
(
𝑥 − 1

3
)
.

Note that when 𝑥 = 1
3 , both the function 𝑓 an the tangent line 𝑔 have
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the same value. For values close to 𝑥 = 1
3 , the tangent line provides an

approximation to 𝑓. Indeed, when 𝑥 = 2
3 , we see that

𝑓( 23 ) =
4
9 and 𝑔( 23 ) =

3
9 .

Exercise 8.1.1 In your calculator on the Y= menu, enter Y1 = Xˆ2 and Y2
= 1/9 + 2(X-1/3)/3. In the Table Setup, set TblStart=0 and ΔTbl=0.05.
When does the difference between the function and its tangent line become
greater than 0.5?

We may redefine the tangent line to reflect its application as an
approximation tool.

The linearization, or linear approximation of a function 𝑓 at
𝑥 = 𝑎 is

𝑃1(𝑥) = 𝑓(𝑎) + 𝑓
′(𝑎) (𝑥 − 𝑎)

where 𝑎 is called the center of the approximation. We use the
notation 𝑃1(𝑥) to signify that this is a one-degree polynomial
approximation.

Example 8.1.2
Let us find the linearization of 𝑓(𝑥) = sin(𝑥) centered at 𝑥 = 0, and use it to
approximate sin(0.12).
The tangent line is easily found to be

𝑃1 (𝑥) = sin(0) + cos(0)(𝑥 − 0) = 𝑥.

At 𝑥 = 0.12, we have 𝑃1 (0.12) = 0.12; hence, sin(0.12) ≈ 0.12. (Note that a
calculator gives sin(0.12) ≈ 0.1197.)
We remark that using this linear approximation to estimate sin(4.5) would

be useless: the tangent line gives 4.5, but we know −1 ≤ sin(𝑥) ≤ 1. Hence,
we see what happens when we move too far from the center. If we wanted to
approximate sin(4.5), we should find a new tangent line centered somewhere
closer to 4.5. �

Example 8.1.3
We can use linear approximations to approximate numerical values such as√
77. We do this by finding the linearization of 𝑓(𝑥) =

√
𝑥 centered at 𝑥 = 81.

Why 𝑥 = 81? Because the value we are interested in approximating is when
𝑥 = 77, it would be foolish indeed to center this at, say, 𝑥 = 1 since that center
would be too far away from the value we wish to approximate. We choose 81
since it is the closest perfect square to 77.
The derivative of 𝑓 is 𝑓′ (𝑥) = 1

2
√
𝑥
. The linearization is then

𝑃1 (𝑥) = 𝑓(81) + 𝑓′ (81)(𝑥 − 81) = 9 + 1
18 (𝑥 − 81).

So 𝑃1 (77) = 8.778 ≈
√
77. (Again, the calculator gives

√
77 ≈ 8.775.) �

Exercise 8.1.4 Find the linearization of ln(𝑥) centered at 𝑥 = 1 and use it to
approximate ln(0.9).
Exercise 8.1.5 Let 𝑘 be any nonzero constant. Find the linearization of
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𝑓(𝑥) = (1+𝑥)𝑘 centered at 𝑥 = 0. Use this linearization to approximate
√
1.06;

3√1.06; 11.06 ; and
1

(1.06)2 .

So now the question is how do we get a better approximation than
the linear one? Adding a quadratic term to our approximation would
be beneficial since it could match the curvature of the function. So we
should use something like the following, to approximate 𝑓(𝑥) centered
at 𝑥 = 𝑎 :

𝑃2(𝑥) = 𝐴 + 𝐵 (𝑥 − 𝑎) + 𝐶 (𝑥 − 𝑎)2.

How do we know what the coefficients𝐴, 𝐵, and 𝐶 are? Well, certainly
we want the values of 𝑓 and 𝑃1 to be the same at 𝑥 = 𝑎 . Therefore, we
need 𝑓(𝑎) = 𝑃2(𝑎) = 𝐴. Also, we want 𝑃2 and 𝑓 to be tangent; thus, we
need 𝑓′(𝑎) = 𝑃′

2 (𝑎). Computing 𝑃
′
2 (𝑥) we get

𝑃′
2 (𝑥) = 𝐵 + 2𝐶 (𝑥 − 𝑎)

so that 𝑃′
2 (𝑎) = 𝐵 = 𝑓′(𝑎). This means that so far we have

𝑃2(𝑥) = 𝑓(𝑎) + 𝑓
′(𝑎) (𝑥 − 𝑎) + 𝐶 (𝑥 − 𝑎)2

and all that remains is to determine 𝐶.
We added the quadratic term so the approximating polynomial can

curve as the function does. This means that we need the concavity
of 𝑃2(𝑥) to match that of 𝑓(𝑥) at 𝑥 = 𝑎 . This implies that we need
𝑓′′ (𝑎) = 𝑃′′

2 (𝑎). Computing,

𝑃′′
2 (𝑥) = 2𝐶

so then 𝑃′′
2 (𝑎) = 2𝐶 = 𝑓′′ (𝑎); this implies 𝐶 = 1

2𝑓
′′ (𝑎). Now we make

the following definition.

The quadratic approximation of a function 𝑓 at 𝑥 = 𝑎 is

𝑃2(𝑥) = 𝑓(𝑎) + 𝑓′(𝑎) (𝑥 − 𝑎) +
1
2
𝑓′′ (𝑎) (𝑥 − 𝑎)2

where 𝑎 is the center.

Example 8.1.6
In Exercise 8.1.4, you found that 𝑃1 (𝑥) = 𝑥 − 1 was the linear approximation of
𝑓(𝑥) = ln(𝑥) at 𝑥 = 1. Now we find the quadratic approximation at 𝑥 = 1.
Since 𝑓′′ (𝑥) = −1/𝑥2, we see that 𝑓′′ (1) = −1. Then the quadratic

approximation is

𝑃2(𝑥) = 𝑥 − 1 −
1
2
(𝑥 − 1)2.

Now we have a better approximation for ln(0.9):

𝑃2 (0.9) = 0.9 − 1 −
1
2
(0.9 − 1)2 = −0.1 − 0.005 = −0.105.

The calculator gives ln(0.9) ≈ −0.1053. �

Exercise 8.1.7 Find the quadratic approximation for 𝑓(𝑥) = sin(2𝑥) +cos(𝑥)
centered at 𝑥 = 0. Graph both 𝑓(𝑥) and 𝑃2 (𝑥) on your calculator on the same
axes. What is an approximate interval over which the difference between 𝑓
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and 𝑃2 is less than 0.5?

It is natural to ask about a cubic approximation. In fact, we can
determine such an approximation using previous methods. Here, we
want to determine coefficients 𝐴, 𝐵, 𝐶, and 𝐷 such that

𝑃3(𝑥) = 𝐴 + 𝐵 (𝑥 − 𝑎) + 𝐶 (𝑥 − 𝑎)2 + 𝐷(𝑥 − 𝑎)3

where, again, 𝑥 = 𝑎 is the center. We will end up going through the
same procedure as with the quadratic approximation to obtain 𝐴, 𝐵,
and 𝐶. Thus, we know 𝐴 = 𝑓(𝑎), 𝐵 = 𝑓′(𝑎), and 𝐶 = 1

2𝑓
′′ (𝑎). It only

remains to determine 𝐷. Following the pattern established, it makes
sense that we need the third derivatives of 𝑓 and 𝑃3 to be equal at 𝑥 = 𝑎 .
Computing, we have

𝑃′
3 (𝑥) = 𝐵 + 2𝐶 (𝑥 − 𝑎) + 3𝐷(𝑥 − 𝑎)2

𝑃′′
3 (𝑥) = 2𝐶 + 6𝐷(𝑥 − 𝑎)

𝑃′′′
3 (𝑥) = 6𝐷

so then 𝑃′′′
3 (𝑎) = 𝑓′′′ (𝑎) = 6𝐷, or 𝐷 = 1

6𝑓
′′′ (𝑎). And, once more, we

state this as a definition.

The cubic approximation of a function 𝑓 at 𝑥 = 𝑎 is

𝑃3(𝑥) = 𝑓(𝑎) + 𝑓′(𝑎) (𝑥 − 𝑎) +
1
2
𝑓′′ (𝑎) (𝑥 − 𝑎)2 +

1
6
𝑓′′′ (𝑎) (𝑥 − 𝑎)3

where 𝑎 is the center.

Example 8.1.8
We now find the cubic approximation to 𝑓(𝑥) = sin(𝑥) centered at 𝑥 = 0. We
have

𝑓′(𝑥) = cos(𝑥), 𝑓′′ (𝑥) = − sin(𝑥), and 𝑓′′′ (𝑥) = − cos(𝑥).

Thus, 𝑓′ (0) = 1, 𝑓′′ (0) = 0, and 𝑓′′′ (0) = −1. The cubic approximation is
therefore

𝑃3 (𝑥) = 0 + 1 · (𝑥 − 0) + 12 · 0 · (𝑥 − 0)2 + 16 (−1)(𝑥 − 0)3 = 𝑥 − 16𝑥
3.

Now we approximate

sin(0.12) ≈ 𝑃3 (0.12) = 0.12 − 16 (0.12)
3 = 0.119712.

This gives a better approximation to sin(0.12) than before. We can see how well
the cubic approximation “fits” the graph of 𝑓(𝑥) = sin(𝑥) in Figure 8.2. �

Exercise 8.1.9 Find the cubic approximation for 𝑓(𝑥) = 1𝑥 + 𝑥2 − 1 centered
at 𝑥 = 1 and use it to approximate 𝑓(1.1).

Example 8.1.10
Consider this question: Approximately how much does the area of a square
increase if its side length increases from 5 cm to 5.3 cm?
This is one situation in which polynomial approximations are useful. We

will find the linearization of the area function, 𝐴(𝑠) = 𝑠2, where 𝑠 is the side
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1 2 3 4 5 6−1−2−3−4−5−6
−1

−2

−3

1

2

𝑥

𝑦

𝑂

𝑦 = 𝑥 −
𝑥3

6

𝑦 = sin(𝑥)

Figure 8.2 – The graph of 𝑦 = sin(𝑥) and the graph of its cubic approximating polynomial, 𝑦 = 𝑥 − 16𝑥
3.

length, centered at 𝑠 = 5. Since 𝐴′ (𝑠) = 2𝑠, we have

𝑃1 (𝑠) = 𝐴(5) + 𝐴′ (5)(𝑠 − 5) = 52 + 2(5)(𝑠 − 5) = 25 + 10(𝑠 − 5).

Therefore, we see that 𝑃1 (𝑠) = 10𝑠 − 25. This, however, is the approximate area
of the square, not the difference between the areas when 𝑠 = 5 and 𝑠 = 5.3. The
difference would be, since 𝐴(5) = 25,

𝑃1(5.3) − 𝐴(5) ≈ 10(5.3) − 25 − 25 = 53 − 50 = 3

and the square’s area increases approximately 3 square centimeters. �

Problems for Section 8.1

Find the linear, quadratic, and cubic approximations
to each of the following, all centered at 𝑥 = 0.

1 𝑓(𝑥) = cos(𝑥)

2 𝑓(𝑥) = tan(𝑥)

3 𝑓(𝑥) = e𝑥

4 𝑓(𝑥) = ln(1 + 𝑥)

5 The best quadratic approximation for an unknown
function 𝑔 centered at 𝑥 = −2 is the polynomial

𝜋 − 12 (𝑥 + 2) − 7(𝑥 + 2)2.

Find 𝑔(−2), 𝑔′(−2), and 𝑔′′(−2).
(Cohen and Henle, 2005, p. 514)

6 A spherical balloon is inflated so that its radius in-
creases from 10 cm to 10.15 cm. By approximately
how much was its volume increased?

7 Prove that if 𝐹 is a quadratic polynomial, then the
quadratic approximation to 𝐹 centered at any point
is 𝐹 itself.

8 The function 𝑓(𝑥) = 𝑥2/3 does not have a polyno-
mial approximation of any degree centered at 𝑥 = 0.
Why?

8.2 Taylor Polynomials

Errors using inadequate data are much less than those using no data at all.
— Charles Babbage

Thanks to the work in previous section, it should be obvious that
the approximating polynomial idea could be extended past the cubic.
Indeed, that is true! Of course, there are some things to be careful
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Chapter 9

NEW TYPES OF FUNCTIONS

The present chapter focuses on the different ways we can modelmotion. Those ways are with vectors, parametric equations, and
polar coordinates. Vectors provide an easy to talk of a particle’s direction
and distance. Parametric equations make explicit the relationship
between motion and time. Polar coordinates are introduced as a more
intuitive way of expressing circular motion. All of these topics enable
us to describe any curve as a kind of function.

9.1 Vectors

Biographical history, as taught in our public schools, is still largely a history of boneheads: ridiculous kings and queens,
paranoid political leaders, compulsive voyagers, ignorant generals – the flotsam and jetsam of historical currents. The

men who radically altered history, the great scientists and mathematicians, are seldom mentioned, if at all.
—Martin Gardner

Suppose you wanted to travel from your home to Taco Bell. There
are many different ways you could get there: the direct route, on the
highway; by numerous back-roads; maybe you could stop by your
friend’s home and take them with you. But no matter which path you
take from your home to Taco Bell, two things about your journey are
identical. After arriving at Taco Bell, the distance you are from home
has not changed and the direction from your home has not changed.
(Notice we are not concernedwith the time it takes to travel the various
ways from your home to Taco Bell, simply that you started at home and
arrived at Taco Bell.)
In any journey, the aspects of distance (from starting point to ending

point) anddirection (in the sense of the “bird’s eye view”amapprovides)
are most important. We encapsulate this notion mathematically with
the idea of a vector. A vector is a mathematical quantity that carries
with it two pieces of information: direction and distance.
Let us use a coordinate plane to refine these ideas. Suppose we start

at point 𝐴(2, 3) and we wish to arrive at point 𝐵 (7, 8). We denote this
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graphically with an arrowwhose tip is at the destination, point 𝐵 in this
case (see Figure 9.1). We may then say that the vector v represents the
displacement from 𝐴 to 𝐵; i.e., v =

−−→
𝐴𝐵.

Note that the only things known about v are the direction and
distance. The distance from 𝐴 to 𝐵 is found by using the standard
distance formula:

𝑥

𝑦

𝐴

𝐵

v =
−−→
𝐴𝐵

𝑂

Figure 9.1 – A vector.

√
(8 − 3)2 + (7 − 2)2 =

√
52 + 52 = 2

√
5,

and the direction can be considered as the angle 𝜃 between the vector
−−→
𝐴𝐵 and a line from 𝐴 parallel to the 𝑥-axis, where 𝜃 satisfies

tan(𝜃) =
8 − 3
7 − 2

=
5
5
= 1.

Thus the vector v =
−−→
𝐴𝐵 has a distance of 2

√
5 and a direction of

arctan(1) = 45◦.
The important aspect of a vector is that a vector is considered a

free vector. That is, the precise location of the vector is irrelevant as
long as direction and distance are preserved. Consider, for example,
shifting the vector in Figure 9.1 so that point 𝐴 coincides with the
origin. Then point 𝐵 is also shifted to another point; call this point 𝐵 ′

with coordinates (8 − 3, 7 − 2) = (5, 5). So we have a vector
−−−→
𝑂𝐵 ′ with

the same direction and distance, as in Figure 9.2.
𝑥

𝑦

𝐴

𝐵

𝐵 ′

v =
−−→
𝐴𝐵

𝑂

Figure 9.2 – Vectors are
free.

Since
−−−→
𝑂𝐵 ′ has the same direction and distance as v =

−−→
𝐴𝐵, we can

say that v =
−−−→
𝑂𝐵 ′ =

−−→
𝐴𝐵. So it makes no real difference where the vector

starts; only what its distance and direction are. Thus, we can henceforth
consider every vector as starting (for convenience) at the origin.
Of course, if we consider every vector as starting at the origin,

then the only other numerical values that define the vector are the
coordinates of its endpoint. Hence, we can properly talk of the vector
in Figure 9.2 as the vector v = 〈5, 5〉, where we use angular brackets to
distinguish this from a coordinate point. Nowwe are ready to formalize
the notion of distance and direction of a vector.

The vector v = 〈𝑣1, 𝑣2〉 has a distance, ormagnitude, defined to be
the norm of the vector:

‖v‖ = ‖〈𝑣1, 𝑣2〉‖ =
√
𝑣21 + 𝑣

2
2.

The vector also has a direction, defined to be the angle 𝜃, where

𝜃 = arctan
(
𝑣2
𝑣1

)
.

Given two vectors u = 〈𝑢1, 𝑢2〉 and v = 〈𝑣1, 𝑣2〉, we define
vector addition as

u + v = 〈𝑢1 + 𝑣1, 𝑢2 + 𝑣2〉 .

Clearly, vector subtraction is similarly defined.

It is “easy” to perform vector addition, but why define it this way?
Because we want to combine two displacements to obtain one overall
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displacement. Suppose we add together the vectors u = 〈3, 1〉 and
v = 〈2, 5〉. Supposing vector v begins at the end of u, we may describe
the overall displacement as the vector u + v = 〈5, 6〉. Figure 9.3 shows
us the placement of the vectors.

𝑥

𝑦

u

vu + v

𝑂

Figure 9.3 – Vector
addition.

The interesting property exhibited in the diagram of Figure 9.3 is
made explicit in Figure 9.4. Since vectors are free, we may move the
vector v to the origin. Then the vectors u and v form two sides of a
parallelogram, with the sum of the two vectors as the diagonal. (The
difference of the two vectors is the other diagonal of the parallelogram.)
We call this property the parallelogram property of vectors.

𝑥

𝑦

u

v

u
+
v

𝑂

Figure 9.4 – The
parallelogram property of
vectors.

Given a real number, or scalar, 𝑐 and a vector v = 〈𝑣1, 𝑣2〉, the
scalar product of 𝑐 and v is defined to be

𝑐v = 𝑐 〈𝑣1, 𝑣2〉 = 〈𝑐𝑣1, 𝑐𝑣2〉 .

Again, suppose v = 〈2, 5〉. Then the vector 7v = 〈14, 35〉 represents
a seven-fold increase in themagnitude of the vector, leaving the vector’s
direction unchanged. In other words, the factor of 7 scales the vector.
Multiplication by a scalar 𝑡, where 0 < 𝑡 < 1 will shrink the vector.
Multiplication by a negative scalar scales the vector as well, but in the
opposite direction.

Exercise 9.1.1 Let p = 〈3, 5〉 and q = 〈−1, 4〉. Sketch the following vectors
on the same graph: q, 2p, −2q, p + q and p − q.
Exercise 9.1.2 Suppose v = 〈𝑣1, 𝑣2〉. Show that ‖v‖2 = 𝑣21 + 𝑣

2
2.

𝑥

𝑦

u

v u − v

𝜃

𝑂

Figure 9.5 – The angle
between two vectors.

Suppose we have the vectors u = 〈𝑢1, 𝑢2〉 and v = 〈𝑣1, 𝑣2〉. We may
find the angle between them by appealing to the Law of Cosines. The
Law of Cosines applies to any triangle. The triangle we will be using
is formed by the vectors u, v, and u − v (see Figure 9.5), and we will
be using it to find the angle 𝜃. Since the Law of Cosines applies to
the lengths of the sides of triangle, we use the magnitudes of the three
vectors, and not the vectors themselves. To proceed, we will rewrite
the Law of Cosines for cos(𝜃), then substitute our vector magnitudes.
Recalling that side 𝑐 is opposite the angle, we have

𝑐2 = 𝑎2 + 𝑏2 − 2𝑎𝑏 cos(𝜃)
𝑐2 − 𝑎2 − 𝑏2 = −2𝑎𝑏 cos(𝜃)

cos(𝜃) =
𝑎2 + 𝑏2 − 𝑐2

2𝑎𝑏
=

‖u‖2 + ‖v‖2 − ‖u − v‖2

2 ‖u‖ ‖v‖

=
𝑢21 + 𝑢

2
2 + 𝑣

2
1 + 𝑣

2
2 − (𝑢1 − 𝑣1)

2 − (𝑢2 − 𝑣2)
2

2 ‖u‖ ‖v‖

=
𝑢21 + 𝑢

2
2 + 𝑣

2
1 + 𝑣

2
2 − 𝑢

2
1 + 2𝑢1𝑣1 − 𝑣

2
1 − 𝑢

2
2 + 2𝑢2𝑣2 − 𝑣

2
2

2 ‖u‖ ‖v‖

=
2𝑢1𝑣1 + 2𝑢2𝑣2
2 ‖u‖ ‖v‖

=
𝑢1𝑣1 + 𝑢2𝑣2
‖u‖ ‖v‖

.

Thus, the cosine of the angle between the two vectors is found by the
above fraction. Clearly, to find the measure of the angle, one finds the
inverse cosine of the fraction.
Wemaywrite the abovemore compactly. Thedenominator is simply
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the product of the magnitudes of the two vectors. The quantity in the
numerator is actually quite useful; we make the following definition.

The dot product of two vectors u = 〈𝑢1, 𝑢2〉 and v = 〈𝑣1, 𝑣2〉 is
defined to be

u · v = 𝑢1𝑣1 + 𝑢2𝑣2.

The cosine of the angle 𝜃 between the two vectors is given by

cos(𝜃) =
u · v

‖u‖ ‖v‖
.

Two vectors are orthogonal if and only if the dot product of
two vectors is zero.

Note that the dot product of two vectors is not another vector, but is
a real-numbered scalar.The expression for the cosine of

the angle between two vectors is
suprisingly useful, as you will
see!

Exercise 9.1.3 Orthogonal simply means perpendicular in this context. So
why are vectors perpendicular if the dot product is zero? What happens if the
angle between them is 90◦?

Next, we turn to another definition.

A unit vector is a vector whose magnitude is 1. Any vector v may
be scaled to a unit vector by dividing by its magnitude; the unit
vector in the same direction as v = 〈𝑣1, 𝑣2〉 but with a magnitude of
1 is given by

v
‖v‖

=

〈
𝑣1
‖v‖

,
𝑣2
‖v‖

〉
.

The two standard unit vectors in the plane are

i = 〈1, 0〉 and j = 〈0, 1〉 .

Suppose we are given the vector u = 〈3, 1〉. Its norm is ‖〈3, 1〉‖ =√
10. Then the unit vector that points in the same direction as u would
be

u
‖u‖

=

〈
3

√
10

,
1

√
10

〉
.

As verification, let us compute the magnitude of the new vector〈
3√
10
, 1√
10

〉
. We have

****
〈
3

√
10

,
1

√
10

〉**** =
√
9
10

+
1
10

= 1.

𝑥

𝑦

2i

5j 2i + 5j

𝑂

Figure 9.6 – Using standard
unit vectors.

The standard unit vectors i and j are far more convenient than we
may think at first glance. Consider the vector v = 〈2, 5〉. We may write
this vector as the sum of standard unit vectors. We have

2i + 5j = 2 〈1, 0〉 + 5 〈0, 1〉 = 〈2, 0〉 + 〈0, 5〉 = 〈2, 5〉 = v.

Hence, we may say v = 2i + 5j. (See Figure 9.6.) This gives us an
alternate way to notate vectors.
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Exercise 9.1.4 Let p = 3i + 5j and q = −i + 4j. Compute p · q. Compute
2p + 3q and write your answer in terms of the standard unit vectors.

Problems for Section 9.1

1 The points 𝐴(−3, 2), 𝐵 (1, 5), and 𝐶 (0,−4) in the
plane determine a triangle.

(a) Determine the vectors −−→𝐴𝐵,
−−→
𝐵𝐶, and

−−→
𝐶𝐴.

(b) Find the lengths of the sides of the triangle.
(c) Graph the three vectors in part (a), making
sure to put the arrowheads in the correct posi-
tion. Why were you asked to find

−−→
𝐶𝐴 and not

−−→
𝐴𝐶?

2 Let u = 〈2,−5〉, v = 〈1, 3〉, andw = 〈6,−2〉.

(a) Compute ‖u‖, ‖v‖, and ‖w‖.
(b) Find theunit vector that has the samedirection
asw.

(c) Compute u · v, u ·w, and v ·w.
(d) Compute (u + v) · w and compare this with
the value of (u · w) + (v · w). What can you
conclude about using addition and the dot
product?

(e) Compute ‖u‖2 and compare this with the
value of u · u. What can you conclude about
the dot product of a vector with itself?

(f) Which pair of vectors given above are orthog-
onal? Find the angles between the other two
pairs of non-orthogonal vectors.

3 In the text, we defined the direction of a vector
as the tangent of the angle the vector makes with
the 𝑥-axis. Although convenient, it is more precise
(for later applications) to define a vector’s direction
with reference to both axes. Let 𝜃 be the angle
v = 〈𝑣1, 𝑣2〉 makes with the 𝑥-axis, and let 𝜑 be the
angle vmakes with the 𝑦-axis. Then these so-called
direction angles are given by

cos(𝜃) =
𝑣1
‖v‖

and cos(𝜑) =
𝑣2
‖v‖

.

Compute the cosines of the direction angles for the
three vectors given in Problem 2.

4 Consider the vector 0 = 〈0, 0〉. This is called the
zero vector.

(a) What is the graph of the zero vector?
(b) Given any vector v = 𝑣1i + 𝑣2j, what is 0 + v?
What is 0 · v?

(c) Supposewe have two vectors p andq such that
p + q = 0. What must be true of the directions
and magnitudes of p and q?

(d) Is it true to say that the zero vector is orthogo-
nal to every vector? Explain.

5 Will the magnitude of a vector ever be negative?
Will it ever be zero? Justify your answers.

9.2 Modeling Motion with Vectors

As the sun eclipses the stars by its brilliance, so the man of knowledge will eclipse the fame of others in assemblies of the
people if he proposes algebraic problems, and still more if he solves them.

— Brahmagupta

One advantage of using the standard unit vectors is they distinctly
separate the horizontal and vertical components of a vector. This is
useful when we use functions that model motion. Using vectors in a
function that modelsmotion allows us to see the horizontal and vertical
motion as distinct, with the resultant motion being the sum of the
horizontal and vertical motions. We make another definition.

A function F(𝑡) = 𝑥(𝑡)i + 𝑦(𝑡)j is a vector-valued function where
𝑥(𝑡) and 𝑦(𝑡) are the usual real-valued functions of the variable 𝑡.
The variable 𝑡 is called the parameter of the function.
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Chapter 10

LINEAR ALGEBRA

Many students who learn linear algebra consider it to be the
mathematics ofmatrices. Whilematrices are a central component

of linear algebra, matrices are not the fundamental idea, only the
representation for that idea. The idea is a linear transformation. By
a linear transformation, we mean any set of linear equations that
describes how to transform one set of points to another. The theory and
concept behind linear transformations gives the study its name: linear
algebra.
Because we are interested in linear transformations in general

(that is, we will investigate more than simply transformation in two-
dimensions), we will begin with a treatment of three-dimensional
vectors. This will result in a natural justification for the matrix
representation of linear transformations. We will also develop some of
the theory and applications of linear algebra.

10.1 The Geometry of Vectors

Mathematical reality lies outside us,
. . . our function is to discover or observe it.

— G. H. Hardy

Vectors are well-suited to describe geometrical concepts. We use
this section to re-interpret some familiar ideas in two dimensions with
vectors, and then to extend these ideas to three dimensions. We begin
with lines in the plane.
Suppose we have a point 𝑃0 (𝑥0, 𝑦0) on a line and a vector n = 〈𝑎 , 𝑏〉

that is perpendicular to the line. Then another point 𝑃(𝑥, 𝑦) is on
the line precisely when the vectors n and

−−→
𝑃0𝑃 are perpendicular. (See

Figure 10.1.) We have the following definition.
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Suppose 𝑃0(𝑥0, 𝑦0) is a point on a line and n = 〈𝑎 , 𝑏〉 is a vector
perpendicular to the line. Then the equation of the line is

n ·
−−→
𝑃0𝑃 = 0

where 𝑃 is any point on the line.

1 2 3
−1

1

2

3

𝑥

𝑦

�

�

𝑃0

𝑃

n

−−→
𝑃0𝑃

𝑂

Figure 10.1 – The equation
of the line 𝑃0𝑃 is derived by
taking the dot product of the
vector from 𝑃0 to 𝑃 and a
vector normal to the line

Notice that this dot product results in the familiar equation of a line.
We have

n ·
−−→
𝑃0𝑃 = 〈𝑎 , 𝑏〉 · 〈𝑥 − 𝑥0, 𝑦 − 𝑦0〉

= 𝑎 (𝑥 − 𝑥0) + 𝑏(𝑦 − 𝑦0) = 0

which simplifies to 𝑎𝑥 + 𝑏𝑦 = 𝑑, where 𝑑 = 𝑎𝑥0 + 𝑏𝑦0.

Example 10.1.1
Suppose the point𝑃0(4, 5) is on a line and the vectorn = 〈−3, 1〉 is perpendicular
to the line. Then, for any point 𝑃 (𝑥,𝑦) on the line, we have

〈−3, 1〉 · 〈𝑥 − 4, 𝑦 − 5〉 = −3(𝑥 − 4) + (𝑦 − 5) = −3𝑥 + 12 + 𝑦 − 5 = 0,

or 3𝑥 − 𝑦 = 7. �

This new way to write a line is very useful, as we will now show.
Given an equation of a line 𝑎𝑥 + 𝑏𝑦 = 𝑑, we see that the vector 〈𝑎 , 𝑏〉
is perpendicular to the line. This is simply what we learned in algebra:
the slopes of perpendicular lines are negative reciprocals. Note that the
slope of 𝑎𝑥 + 𝑏𝑦 = 𝑑 is − 𝑎

𝑏 and the slope of the vector 〈𝑎 , 𝑏〉 is
𝑏
𝑎 .

The representationof a line by an equationn ·
−−→
𝑃0𝑃 = 0 is not unique.

Any point on the line can replace 𝑃0, and a nonzero multiple of n can
replace nwithout changing the set of points 𝑃 that satisfy the equation.
We can use some of this freedom by requiring the vector n to be a
unit vector. The result is called the normalized equation, which then
becomes

u ·
−−→
𝑃0𝑃 = 0 where u =

n
‖n‖

.

Example 10.1.2
Suppose the point 𝑃0 (−1,−1) lies on a line and n = 〈3, 4〉 is orthogonal to the
line. Then the normalized equation of the line is

〈3, 4〉
‖〈3, 4〉‖

· 〈𝑥 + 1, 𝑦 + 1〉 = 35 (𝑥 + 1) + 45 (𝑦 + 1) = 0,

or 35𝑥 + 45𝑦 = − 75 . �

v p

𝑘w𝜃

w

𝑄

𝑃
𝑅

𝑂

Figure 10.2 – The projection of v on
w is 𝑘w.

At this point, it is prudent to give another interpretation of
the dot product of two vectors. Consider a vectorw =

−−→
𝑂𝑃 and

a vector v =
−−→
𝑂𝑄. If we drop a perpendicular from 𝑄 to

−−→
𝑂𝑃, as

in Figure 10.2, we create a vector p =
−−→
𝑄𝑅 where 𝑅 is the foot of

the perpendicular. The vector
−−→
𝑂𝑅 is called the projection of

v on w. Note that the vector
−−→
𝑂𝑅, which lies on w, is a scalar

multiple ofw; i.e.,
−−→
𝑂𝑅 = 𝑘w.
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Since cos 𝜃 = ±‖𝑘w‖/‖v‖, we have that

v ·w = ‖v‖ ‖w‖ cos 𝜃 = ± ‖v‖ ‖w‖
‖𝑘w‖

‖v‖
= ± ‖w‖ ‖𝑘w‖

where the sign is chosen as positive if 𝜃 is an acute angle or negative if
𝜃 is an obtuse angle. Hence, we have the following alternate definition
of the dot product.

The dot product of v andw is

v ·w = ± ‖w‖ ‖projection of v onw‖ = ± ‖w‖ ‖𝑘w‖ = ±𝑘 ‖w‖2

This interpretation of the dot product helps to prove the following.

LEMMA 10.A (Distance from a Point to a Line) Let u ·
−−→
𝑃0𝑃 = 0 be the

normalized equation of a line and let 𝑃1 be any point in the plane. Then
the distance from 𝑃1 to the line is given by 𝐷 = |u ·

−−−→
𝑃0𝑃1 |.

Proof. From point 𝑃1 we drop a perpendicular to
−−→
𝑃0𝑃, meeting the

vector at point 𝑄. Then the distance we seek is given by 𝐷 = ‖
−−→
𝑃1𝑄‖.

Recall that u is a unit vector perpendicular to the line. Hence, the
projection of −−−→𝑃0𝑃1 on u is exactly

−−→
𝑃1𝑄. Thus,

u ·
−−−→
𝑃0𝑃1 = ± ‖u‖ ‖

−−→
𝑃1𝑄‖ = ± ‖u‖ 𝐷.

Therefore, since u is a unit vector and distance is always positive, we
have

|u ·
−−−→
𝑃0𝑃1 | = 𝐷. �

Example 10.1.3
To find the distance from the point (2,−1) to the line 3𝑥 + 4𝑦 = 9, we first
write the normalized equation of the line. The vector perpendicular to the
line is n = 〈3, 4〉, so the unit vector is

〈 3
5 ,
4
5
〉
. Then the normalized equation

is 35𝑥 + 45𝑦 − 95 = 0. Now we substitute the point (2,−1) into the normalized
expression to get

3
5 (2) +

4
5 (−1) −

9
5 =

6
5 −

4
5 −

9
5 = − 75 ,

which indicates that


− 75 

 = 75 is the distance from the point to the line. �

Examining distanceswith vectors naturally leads tomeasuring other
geometric properties. One such property is area.

THEOREM 10.B (Area of a Parallelogram) Let vectors v and w lie in
the plane such that they form adjacent sides of a parallelogram. Then the
area of the parallelogram is given by

𝐴 = ‖v‖ ‖w‖ sin 𝜃

where 𝜃 is the angle between the two vectors.
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Proof. Suppose w = 〈𝑤1,𝑤2〉 and v = 〈𝑣1, 𝑣2〉 both emanate from the
origin with an angle of 𝜃 between them. Without loss of generality,
assume v is long enough so that when a perpendicular is dropped from
the end of w, the perpendicular intersects v, as in Figure 10.3. Call
the length of the perpendicular ℎ. Then, since sin 𝜃 = ℎ/‖w‖, we
have ℎ = ‖w‖ sin(𝜃). Thus, because the base is ‖v‖, the area of the
parallelogram is

𝐴 = 𝑏ℎ = ‖v‖ ‖w‖ sin(𝜃),

and the theorem is proved. �

1 2 3

1

2

3

4

𝑥

𝑦

w

v

ℎ

𝜃

𝑂

Figure 10.3 – The area of a
parallelogram.

Exercise 10.1.4 Find the distance from the point (4,−7) to the line through
the point (−3, 1) and perpendicular to the vector 〈2, 3〉.

Exercise 10.1.5 Find the area of the parallelogram formed by
〈
3,
√
3
〉
and

〈0, 9〉.

Problems for Section 10.1

1 Find the equation of the line through (3,−1) and
perpendicular to 〈−1, 2〉.

2 Find the unit vector that is perpendicular to the line
2𝑥 − 𝑦 + 4 = 0.

3 Find the distance from the point (−1, 7) to the line
4𝑥 − 𝑦 − 11 = 0.

4 Find the area of the parallelogram formed by the
vectors 〈−2, 4〉 and 〈3, 3〉. What is the area of the
triangle formed by these vectors?

5 Given that v = 〈𝑥, 𝑦〉, explain why ‖v‖ = 𝑟 is the
equation of a circle of radius 𝑟. What is the circle’s
center?

6 Given three points 𝑅(2, 5), 𝑆 (−4,2), and 𝑇 (1,−1)
in the plane, find:

(a) the equation of the line through 𝑆 if −→𝑇 𝑅 is the
normal vector;

(b) the distance from 𝑅 to the line found in part
(a);

(c) the unit vector perpendicular to the line
through 𝑅 and 𝑆;

(d) the area of the parallelogram formed by
−→
𝑆𝑅

and
−→
𝑆𝑇 ;

(e) the equations of the line through 𝑅 that is
perpendicular to the line through 𝑆 and 𝑇 ;

(f) the angles of the triangle formed by vertices 𝑅,
𝑆, and 𝑇 .

10.2 Vectors in Three Dimensions

There exists, if I am not mistaken, an entire world which is the totality of mathematical truths,
to which we have access only with our mind, just as a world of physical reality exists,

the one like the other independent of ourselves, both of divine creation.
— Charles Hermite

Vectors in three-dimensional space are analogous to vectors in the
plane but with a third component to represent the third dimension. A
vector in space is v = 〈𝑣1, 𝑣2, 𝑣3〉 where the third component can be
considered “height” (if the first two are “length” and “width”). This
leads to a third standard unit vector, and modifications to the familiar i
and j:

i = 〈1, 0, 0〉 , j = 〈0, 1, 0〉 , k = 〈0, 0, 1〉 .
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Problems for Section 10.8

Find the eigenvalues and eigenvectors of the following
matrices.

1
[
−3 2
8 3

]

2
⎡⎢⎢⎢⎢⎣
0 1 −2
2 1 0
4 −2 5

⎤⎥⎥⎥⎥⎦
3

⎡⎢⎢⎢⎢⎣
0 1 0
1 0 1
0 1 0

⎤⎥⎥⎥⎥⎦

4
[
𝜋 2
0 2𝜋

]

5
⎡⎢⎢⎢⎢⎣
5 −2 8

−4 0 −5
−4 2 −7

⎤⎥⎥⎥⎥⎦
6

⎡⎢⎢⎢⎢⎣
0 1 −2

−6 5 −4
0 0 3

⎤⎥⎥⎥⎥⎦

7 Prove that the product of the eigenvalues of a square
matrix is equal to its determinant.

8 Prove that every square matrix is similar to itself.

9 Prove that if 𝐴 is similar to 𝐵 and 𝐵 is similar to 𝐶,
then 𝐴 is similar to 𝐶.

10.9 Orthogonal Matrices

In many cases, mathematics is an escape from reality. The mathematician finds his own monastic niche and happiness in
pursuits that are disconnected from external affairs. Some practice it as if using a drug. Chess sometimes plays a similar

role. In their unhappiness over the events of this world, some immerse themselves in a kind of self-sufficiency in
mathematics. (Some have engaged in it for this reason alone.)

— Stanislaw Ulam

We begin this section with a new matrix operation in which we
interchange the rows and columns of a matrix.

The transpose of a matrix𝐴, denoted𝐴𝑇 , is obtained by swapping
rows of 𝐴 with the columns of 𝐴. That is, if 𝐴 = [𝑎𝑖𝑗], then
𝐴𝑇 = [𝑎𝑗𝑖].

Example 10.9.1

We have that if 𝐴 =

⎡⎢⎢⎢⎢⎣
1 0

−4 5
4 3

⎤⎥⎥⎥⎥⎦
, then 𝐴𝑇 =

[
1 −4 4
0 5 3

]
.

Clearly, if the matrix is square, so is its transpose. �

The transpose obeys several rules, as the theorem below indicates.

THEOREM 10.P (Properties of the Transpose) Suppose 𝐴 and 𝐵 are
matrices and 𝑘 is a constant. Then

i. (𝐴𝑇 )𝑇 = 𝐴.

ii. (𝑘𝐴)𝑇 = 𝑘𝐴𝑇 .

iii. (𝐴 + 𝐵)𝑇 = 𝐴𝑇 + 𝐵𝑇 .

iv. (𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇 .

v. If 𝐴 is nonsingular, then (𝐴𝑇 )−1 = (𝐴−1)𝑇 .
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Proof. Proofs of statements (i) and (ii) are left as Problem 15.
To prove statement (iii), we set 𝐶 = 𝐴 + 𝐵 and 𝐷 = 𝐴𝑇 + 𝐵𝑇 . Then

𝑐𝑖𝑗 = 𝑎𝑖𝑗 + 𝑏𝑖𝑗 and 𝑑𝑖𝑗 = 𝑎𝑗𝑖 + 𝑏𝑗𝑖 for all 𝑖 and 𝑗. Then 𝐶𝑇 = [𝑐𝑗𝑖] =
[𝑎𝑗𝑖 + 𝑏𝑗𝑖] = [𝑑𝑖𝑗] = 𝐷, which proves the statement.
To prove statement (iv), we let 𝐴 be an 𝑚 × 𝑝 matrix and 𝐵 a

𝑝 × 𝑛 matrix so that the multiplication of 𝐴 and 𝐵 is defined. Now set
𝐸 = 𝐴𝐵 = [𝑒𝑖𝑗] and 𝐹 = 𝐵𝑇𝐴𝑇 = [𝑓𝑖𝑗], where

𝑓𝑖𝑗 = 𝑏1𝑖𝑎𝑗1 + · · · + 𝑏𝑝𝑖𝑎𝑗𝑝 = 𝑎𝑗1𝑏1𝑖 + · · · + 𝑎𝑗𝑝𝑏𝑝𝑖 = 𝑒𝑗𝑖

for 𝑖 = 1, 2, . . . , 𝑛 and 𝑗 = 1, 2, . . . ,𝑚. Thus, 𝐹 = 𝐸𝑇 , and the statement
follows.
Finally, to prove statement (v), write 𝐴𝐴−1 = 𝐼. Then by statement

(iv), (𝐴𝐴−1)𝑇 = (𝐴−1)𝑇𝐴𝑇 = 𝐼𝑇 = 𝐼, so that 𝐴𝑇 has an inverse (𝐴𝑇 )−1,
which, since inverses are unique, must be equal to (𝐴−1)𝑇 . �

With the transpose, we may succintly write a column vector as the
transpose of the corresponding row vector:

[
𝑥1 𝑥2 𝑥3

] ⎡⎢⎢⎢⎢⎣
𝑦1
𝑦2
𝑦3

⎤⎥⎥⎥⎥⎦
=

[
𝑥1 𝑥2 𝑥3

] [
𝑦1 𝑦2 𝑦3

]𝑇

Note that this gives us a way to express the dot product of x and y as
the product of the “matrix” x and the “matrix” y𝑇 . Hence, x · y = xy𝑇 .
A square matrix 𝑀 for which 𝑀 = 𝑀𝑇 is called a symmetric

matrix.

Example 10.9.2
Both the matrices [

1 3
3 4

]
and

⎡⎢⎢⎢⎢⎣
2 1 0
1 −1 −3
0 −3 5

⎤⎥⎥⎥⎥⎦
are symmetric. �

Concerning symmetric matrices, we have the following interesting
result linking symmetry with eigenvalues.

THEOREM 10.Q Suppose𝐴 is an 𝑛×𝑛 symmetricmatrix. Then any two
eigenvectors that are associated with distinct eigenvalues are orthogonal.

Proof. For symmetric matrix 𝐴, suppose 𝜆1 has eigenvector x1 and 𝜆2
has eigenvector x2. Then

𝜆2(x1 · x2) = (𝜆2x1)x𝑇2
= x1(𝜆2x𝑇2 )

= x1𝐴x𝑇2 ,
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and since 𝐴 is symmmetric,𝐴 = 𝐴𝑇 , so that we have

= x1𝐴𝑇 x𝑇2
= (x1𝐴𝑇 )x𝑇2
= (𝐴x𝑇1 )

𝑇 x𝑇2
= (𝜆1x𝑇1 )

𝑇 x𝑇2
= 𝜆1(x𝑇1 )

𝑇 x𝑇2
= 𝜆1(x1x𝑇2 )
= 𝜆1(x1 · x2).

Thus, 𝜆1(x1 · x2) = 𝜆2(x1 · x2), or (𝜆1 − 𝜆2) (x1 · x2) = 0. Since 𝜆1 ≠ 𝜆2,
we must have that x1 · x2 = 0. Therefore, since the dot product is zero,
the eigenvectors are orthogonal. �

We introduce some notation. The symbol diag(𝑎11, 𝑎22, . . . , 𝑎𝑛𝑛)
denotes thematrixwhose every entry is zero except for the entries along
the main diagonal; such a matrix is called a diagonal matrix. For
example,

diag(2, 7,−1) =
⎡⎢⎢⎢⎢⎣
2 0 0
0 7 0
0 0 −1

⎤⎥⎥⎥⎥⎦
.

Note that everydiagonalmatrix diag(𝑎11, 𝑎22, . . . , 𝑎𝑛𝑛) is also symmetric.
The next theorem relates the concept of similarity to the eigenvalues

of a matrix.

COROLLARY 10.R Let the 𝑛 × 𝑛 matrix 𝐴 have 𝑛 distinct eigenvalues
𝜆𝑖 for 𝑖 = 1, 2, . . . , 𝑛. Then 𝐴 is similar to diag(𝜆1, 𝜆2, . . . , 𝜆𝑛).

Proof. Let 𝐴 have 𝑛 distinct eigenvalues 𝜆𝑖. Then 𝐴 also has 𝑛 distinct
eigenvectors x𝑖 so that𝐴x𝑖 = 𝜆𝑖x𝑖 for every 𝑖. Let 𝐶 be the matrix whose
column vectors are the eigenvectors of𝐴; in other words,

𝐶 =
[
x1 x2 · · · x𝑛

]
.

Then we have

𝐴𝐶 = 𝐴
[
x1 x2 · · · x𝑛

]

= 𝐴

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑥11 𝑥12 · · · 𝑥1𝑛
𝑥21 𝑥22 · · · 𝑥2𝑛
...

...
. . .

...
𝑥𝑛1 𝑥𝑛2 · · · 𝑥𝑛𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜆1𝑥11 𝜆2𝑥12 · · · 𝜆𝑛𝑥1𝑛
𝜆1𝑥21 𝜆2𝑥22 · · · 𝜆𝑛𝑥2𝑛

...
...

. . .
...

𝜆1𝑥𝑛1 𝜆2𝑥𝑛2 · · · 𝜆𝑛𝑥𝑛𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑥11 𝑥12 · · · 𝑥1𝑛
𝑥21 𝑥22 · · · 𝑥2𝑛
...

...
. . .

...
𝑥𝑛1 𝑥𝑛2 · · · 𝑥𝑛𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜆1 0 · · · 0
0 𝜆2 · · · 0
...

...
. . .

...
0 0 · · · 𝜆𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= 𝐶diag(𝜆1, 𝜆2, . . . , 𝜆𝑛).
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Since 𝐶 is the matrix of eigenvectors arising from 𝑛 distinct eigen-
values, by Theorem 10.Q, we know that 𝐶 consists of mutually
orthogonal columns; hence, det𝐶 cannot be zero, which means
that 𝐶 is nonsingular. Therefore, we may multiply both sides of
𝐴𝐶 = 𝐶diag(𝜆1, 𝜆2, . . . , 𝜆𝑛) by 𝐶−1 to get diag(𝜆1, 𝜆2, . . . , 𝜆𝑛) = 𝐶−1𝐴𝐶.
We conclude that 𝐴 ∼ diag(𝜆1, 𝜆2, . . . , 𝜆𝑛). �

Since a matrix is always similar to its diagonal matrix of its eigen-
values, we have a computationally easier way to study the effect of large
matrices. For example, let𝐷 = diag(𝜆1, . . . , 𝜆𝑛) and suppose we wish to
calculate 𝐴2. Since we have 𝐴 = 𝐶𝐷𝐶−1, then

𝐴2 = (𝐶𝐷𝐶−1) (𝐶𝐷𝐶−1) = 𝐶𝐷(𝐶−1𝐶)𝐷𝐶−1 = 𝐶𝐷2𝐶−1.

Similarly,

𝐴3 = (𝐶𝐷2𝐶−1) (𝐶𝐷𝐶−1) = 𝐶𝐷2(𝐶𝐶−1)𝐷𝐶−1 = 𝐶𝐷3𝐶−1.

In this manner, we see that

𝐴𝑘 = 𝐶𝐷𝑘𝐶−1.

Powers of diagonal matrices are very easy to compute:

𝐷𝑘 = [diag(𝜆1, . . . , 𝜆𝑛)]𝑘 = diag(𝜆𝑘1 , . . . , 𝜆
𝑘
𝑛).

Example 10.9.3
From Example 10.8.1, we know the eigenvalues and eigenvectors of

𝐴 =

[
1 2
3 2

]
.

Thus, instead of performing three complicated mutiplications, we compute

𝐴4 =

[
−1 2
1 3

] [
−1 0
0 4

]4 [
−1 2
1 3

]−1

=

[
−1 2
1 3

] [
(−1)4 0
0 44

] [ 3
5 − 25

− 15 − 15

]

=

[
103 102
153 154

]
.

Computing 𝐴 to any other large power is much simpler than multiplying 𝐴 to
itself over and over again. �

Questions of orthogonality bring us to the following definition.

A square matrix𝑀 is called an orthogonal matrix if𝑀𝑀𝑇 = 𝐼. In
other words,𝑀 is orthogonal if and only if𝑀𝑇 = 𝑀−1.

There are two consequences of this definition. The first is that every
orthogonal matrix must also be nonsingular. The second is that, due to
the commutativity of a matrix and its inverse,𝑀𝑀𝑇 = 𝑀𝑇𝑀 = 𝐼.
Let us give a reason for this definition. Wemay call a matrix𝑀 such

that 𝑀𝑀𝑇 = 𝐼 orthogonal because each row vector is orthogonal to
every other row vector, and each column vector is orthogonal to every
other column vector. In particular, we have the following theorem.
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THEOREM 10.S A square matrix 𝑀 is orthogonal if and only if each
column and row vector is a unit vector and each column and row vector
is orthogonal to every other column and row vector.

Proof. Let us denote the columns of𝑀 bym𝑖 for 𝑖 = 1, 2, . . . , 𝑛. Then

𝑀 =
[
m1 m2 · · · m𝑛

]
and 𝑀𝑇 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

m𝑇
1

m𝑇
2
...

m𝑇
𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎦
so that

𝑀𝑇𝑀 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

m𝑇
1m1 m𝑇

1m2 · · · m𝑇
1m𝑛

m𝑇
2m1 m𝑇

2m2 · · · m𝑇
2m𝑛

...
...

. . .
...

m𝑇
𝑛m1 m𝑇

𝑛m2 · · · m𝑇
𝑛m𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= 𝐼.

Thus, sincem𝑇
𝑖 m𝑖 = 1 for each 𝑖, each column vector is a unit vector;

sincem𝑇
𝑖 m𝑗 = 0 when 𝑖 ≠ 𝑗, the column vectors are orthogonal.

The proof for the row vectors is similar and is omitted. �

Exercise 10.9.4 Is the matrix 𝐵 =
1
7

⎡⎢⎢⎢⎢⎣
2 3 6
3 −6 2

−6 −2 3

⎤⎥⎥⎥⎥⎦
orthogonal? Explain.

Exercise 10.9.5 What is the determinant of 𝐵?

Example 10.9.6
The matrix

𝑅(𝜃) =

[
cos(𝜃) − sin(𝜃)
sin(𝜃) cos(𝜃)

]

is orthogonal for every 𝜃. Note that

𝑅𝑇 𝑅 =

[
cos(𝜃) sin(𝜃)

− sin(𝜃) cos(𝜃)

] [
cos(𝜃) − sin(𝜃)
sin(𝜃) cos(𝜃)

]

=

[
cos2 (𝜃) + sin2 (𝜃) 0

0 cos2 (𝜃) + sin2 (𝜃)

]
=

[
1 0
0 1

]
= 𝐼.

Also the magnitude of each column is 1, and the columns are orthogonal for
every 𝜃. �

Thematrix𝑅(𝜃) in the above example is called a rotationalmatrix.
Thismatrix represents a counterclockwise rotation of 𝜃about the origin.

Example 10.9.7
The point (2, 0) is rotated to the point (0, 2) when the matrix 𝑅( 𝜋2 ) is applied.
To wit: [

cos
(𝜋
2
)

− sin
(𝜋
2
)

sin
( 𝜋
2
)

cos
(𝜋
2
)
] [
2
0

]
=

[
0 −1
1 0

] [
2
0

]
=

[
0 2

]
.

In fact we may rotate any point (𝑥, 𝑦).
[
cos

(𝜋
2
)

− sin
(𝜋
2
)

sin
(𝜋
2
)

cos
(𝜋
2
)
] [
𝑥
𝑦

]
=

[
0 −1
1 0

] [
𝑥
𝑦

]
=

[
−𝑦 𝑥

]
.

Hence, the rotation sends the point (𝑥, 𝑦) to the point (−𝑦,𝑥).
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If a locus of points are described by some equation, say 𝑦 = 𝑓(𝑥), then this
allows us to rotate all such points through an angle of 𝜋2 . If 𝑦 = 𝑥2, then the
point (𝑥,𝑥2) becomes (−𝑥2,𝑥). In other words, the upward positive parabola
𝑦 = 𝑥2 rotates to become 𝑥 = −𝑦2, which describes a parabola that opens to the
left. �

Problems for Section 10.9

1 What is det𝑅(𝜃)?
Find the transpose of each matrix.

2
[
1 2 3
7 0 5

]

3
[
2 8 −4 1

] 4
⎡⎢⎢⎢⎢⎣
2
1

−6

⎤⎥⎥⎥⎥⎦
Find the values of 𝑎 and 𝑏 so that each matrix is
symmetric.

5
[
−3 3𝑎 − 1
2𝑎 7

]
6

⎡⎢⎢⎢⎢⎣
1 𝑎 8

𝑏 − 𝑎 9 4 + 𝑎
8 𝑏 3

⎤⎥⎥⎥⎥⎦
Are the following matrices orthogonal? Justify your
answers.

7

[√
3
2 − 12
1
2

√
3
2

]

8
⎡⎢⎢⎢⎢⎣
1 0 0
0 0 1
0 1 0

⎤⎥⎥⎥⎥⎦

9

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1√
3

2√
6

0
1√
3

− 1√
6

1√
2

1√
3

− 1√
6

− 1√
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

10
⎡⎢⎢⎢⎢⎣
cos(𝜃) − sin(𝜃) 0
sin(𝜃) cos(𝜃) 0
0 0 1

⎤⎥⎥⎥⎥⎦
11

⎡⎢⎢⎢⎢⎣
2 1 2
1 2 −2

−2 2 1

⎤⎥⎥⎥⎥⎦

12 Suppose 𝐴 =

[
3 1
4 3

]
.

(a) Find a matrix 𝐵 and a nonsingular matrix 𝐶 so
that 𝐴 = 𝐶𝐵𝐶−1.

(b) Compute𝐴5.

Each matrix is a rotational matrix. Determine the
angle of rotation, then determine the new, rotated
equations of the lines 𝑥 = 0 and 𝑦 = 0.

13

[
1
2 −

√
3
2√

3
2

1
2

]
14

⎡⎢⎢⎢⎢⎣
1√
2

− 1√
2

1√
2

1√
2

⎤⎥⎥⎥⎥⎦

15 Prove statements (i) and (ii) of Theorem 10.P.

16 Suppose 𝐴 is an orthogonal matrix.

(a) Prove that det𝐴 = ±1.

(b) Prove that 𝐴𝑇 and 𝐴−1 are also orthogonal.

10.10 Preparation and Extension

One of the penalties for refusing to participate in politics is that you end up being governed by your inferiors.
— Plato

Preparation Problems for Chapter 10

Find the velocity and acceleration vectors, given the
position vector p(𝑡).

1 p(𝑡) =
〈
6𝑡e−2𝑡, 8e−2𝑡,−16𝑡2

〉
2 p(𝑡) =

〈
6e−3𝑡, sin(3𝑡), 𝑡3 − 6𝑡

〉

Find the position vector, given either the velocity
vector v(𝑡) or the acceleration vector a(𝑡).

3 v(𝑡) =
〈
10, 3e𝑡 ,−32𝑡 + 8

〉
, p(0) = 〈0, 6, 20〉

4 v(𝑡) =
〈
𝑡 + 1, 𝑡2, e−𝑡/3

〉
, p(0) = 〈4, 0,−3〉
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(Note that at the critical point, the price of butter becomes 279 cents per
pound and cheese becomes 470 cents per pound. According to the webpage
UnderstandingDairyMarkets, by BrianW.Gould of theUniversity ofWisconsin,
in 2009 the average national cost of butter was $2.80 per pound and that of
cheddar cheese was $4.70 per pound. �

Pricing information from
future.aae.wisc.edu/

tab/prices.html, retrieved
January 2011.

Problems for Section 11.10

For each of the following surfaces, find critical points
and test those points for extrema.

1 𝑧 = 2𝑥3 − 𝑥𝑦2 + 5𝑥2 − 𝑦2

2 𝑧 = 𝑥3 − 12𝑥𝑦 + 8𝑦3

3 𝑧 = 2𝑥2 − 𝑥𝑦 − 3𝑦2 − 3𝑥 + 7𝑦

4 𝑧 = 𝑥 cosh(𝑦)

5 𝑧 = 𝑥2 − 2𝑥(sin(𝑦) + cos(𝑦)) + 1

6 𝑧 = 𝑥2 + 𝑦2 + 2𝑥−1𝑦−2

7 𝑧 = 𝑥3 + 𝑦2 − 3𝑥2 − 3𝑦 − 9𝑥

8 (Calculator) Products𝐴 and𝐵 are jointly produced.
The price of product 𝐴 is 𝑃𝐴 (𝑥) = 300 − 𝑥 and that
of product 𝐵 is 𝑃𝐵 (𝑦) = 150 − 4𝑦. The joint cost is

𝐶 (𝑥, 𝑦) = 2𝑥2 + 12𝑦
2 + 𝑥𝑦 + 30.

What is the maximum profit of this production
model, and what prices should be established for 𝐴
and 𝐵 to achieve the maximum profit?

11.11 The Lagrange Multiplier

The reader will find no figures in this work. The methods which I set forth do not require either constructions or
geometrical or mechanical reasonings: but only algebraic operations, subject to a regular and uniform rule of procedure.

— Joseph-Louis Lagrange

Often we are required tomaximize orminimize a function 𝑓(𝑥, 𝑦, 𝑧)
subject to a condition 𝑔(𝑥, 𝑦, 𝑧). For instance wemaywant to maximize
profit, but under the constraint of the availability of supplies. So in
this section we develop methods to find extrema of functions subject to
additional constraints, or side conditions.
The viability of such methods is a direct result of the existence of the

following type of extrema. Given a function and a constraint, the effect
of the constraint on the function is to retrict the function’s domain to a
closed subset 𝐸 of the domain 𝐷.

Let 𝑧 = 𝑓(𝑥, 𝑦) be a continuous function defined on a closed region
𝐸 formed from a domain 𝐷 of the 𝑥𝑦-plane. If 𝑃0 is a point of 𝐸
such that 𝑓(𝑃0) ≥ 𝑓(𝑥, 𝑦) for all points (𝑥, 𝑦) in 𝐸, then 𝑃0 is an
absolute maximum. If 𝑃0 is a point of 𝐸 such that 𝑓(𝑃0) ≤ 𝑓(𝑥, 𝑦)
for all points (𝑥, 𝑦) in 𝐸, then 𝑃0 is an absolute minimum.

This, combined with the following theorem, is exploited to find
extrema of functions with constraints.

THEOREM 11.M Suppose 𝐷 is a bounded domain of the 𝑥𝑦-plane. If
𝑧 = 𝑓(𝑥, 𝑦) is defined and continuous in the closed region 𝐸 formed of
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𝐷 and its boundary, then 𝑓 has an absolute maximum and an absolute
minimum in 𝐸.

This theorem is the three-dimensional analogue of the Extreme
Value Theorem. Since every continuous function has absolute extrema
on a closed region, we are guaranteed to find extrema. However, in
the course of our search we may find (as in the last section) saddle
points or other local extrema as well. One method to find absolute
extrema, which is illustrated in the example below, relies on being able
to write the constraint in terms of one variable. This method for finding
absolute extrema is known as the direct method.

𝑥

𝑦

𝑧

�

�

�

Figure 11.10 – Figure for
Example 11.11.1. The points
of absolute extrema of the
surface under the constraint
are marked.

Example 11.11.1
Let us find the absolute maximum and absolute minimum of 𝑧 = 𝑥2 + 2𝑦2 − 𝑥
on the unit disk 𝑥2 + 𝑦2 ≤ 1.
Since 𝜕𝑧

𝜕𝑥 = 2𝑥 − 1 and 𝜕𝑧
𝜕𝑦 = 4𝑦, we have a critical point at ( 12 , 0). Note

that this critical point is within the unit disk, so it is a candidate for absolute
extrema.
Now we investigate the function values on the boundary of the unit

disk. Figure 11.10 shows the surface 𝑧 and the projection of the constraint
onto the surface. It is along this projected curve that we find extrema.
To do this, we substitute the boundary equation 𝑥2 + 𝑦2 = 1 into 𝑧 to get
𝑧 = 2 − 𝑥 − 𝑥2 = (2 + 𝑥)(1 − 𝑥), which is valid for −1 ≤ 𝑥 ≤ 1. This function
(which is now a single-variable function) has the critical points 𝑥 = −1, 𝑥 = − 12 ,
and 𝑥 = 1 on the boundary.
Finally, to determine absolute extrema, we evaluate 𝑧 at these points and

see which is the smallest and which is the largest. At the point ( 12 , 0), we
compute 𝑧 = − 14 . On the boundary, we may compute values of 𝑧 using the
equation 𝑧 = (2 + 𝑥)(1− 𝑥). Hence, 𝑥 = −1 gives 𝑧 = 2; 𝑥 = − 12 gives 𝑧 = 94 ; and
𝑥 = 1 gives 𝑧 = 0. Thus we conclude that the absolute maximum is 94 which

occurs at the two points (− 12 ,±
√
3
2 ) and the absolute minimum is − 14 which

occurs at ( 12 , 0). (Since the minimum occurs inside the unit disk, it is also a
relative minimum.) �

This direct method is very useful in the simple cases, but is im-
plausible for more complicated functions and constraints: it may be
impossible to solve the constraint equation for one of the variables. So
although the direct method is fine, we need a more general method.
This method is called the Lagrangemultipliermethod and its basis is
the following theorem.Joseph-Louis Lagrange, 18th

century Italian-born French
mathematician, advanced all
fields of analysis, number
theory, and celestial mechanics.
He first wrote about the
multiplier 1764, and fully
realized the method in his
groundbreaking book
Mechanical Analysis of 1788.

THEOREM 11.N (Lagrange’s Theorem) Let functions 𝑓(x) and 𝑔(x)
have continuous partial derivatives in a neighborhood of x0. If x0 gives
an extreme of 𝑓 subject to the constraint 𝑔(x) = 0 where ∇𝑔(x0) ≠ 0, then
∇𝑓(x0) = 𝜆∇𝑔(x0) for some constant 𝜆.

Proof. Suppose the point x0 gives an extreme of 𝑓(x) where 𝑔(x) = 0 is
given as a constraint. Let 𝐶 (𝑡) be any differentiable curve lying on the
surface 𝑓 that passes through the point 𝑓(x0). Then there is a value 𝑡0
such that 𝐶 (𝑡0) = x0. Then the function 𝑓(𝐶 (𝑡)) has a an extreme for
𝑡 = 𝑡0. The derivative of 𝑓(𝐶 (𝑡)) at the point 𝑡0 is therefore zero. In
other words, by the Chain Rule,

𝑑

𝑑𝑡
𝑓(𝐶 (𝑡))






𝑡0

=
𝜕𝑓

𝜕𝑥

𝑑𝑥

𝑑𝑡
+
𝜕𝑓

𝜕𝑦

𝑑𝑦

𝑑𝑡
+
𝜕𝑓

𝜕𝑧

𝑑𝑧

𝑑𝑡






𝑡0

= ∇𝑓(x0) · 𝐶 ′(𝑡0) = 0.
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This implies that ∇𝑓(x0) is normal to the curve 𝐶 at 𝑓(x0). Since the
curve 𝐶 was an arbitrary curve passing through 𝑓(x0), we have that
∇𝑓(x0) is normal to every curve passing through 𝑓(x0).
Since x0 maximizes 𝑓 subject to 𝑔 = 0, it must be that 𝑔 passes

through the point 𝑓(x0) also. By definition, ∇𝑔(x0) is normal to the
surface 𝑔 = 0; but so is ∇𝑓(x0). Thus, ∇𝑔(x0) is parallel to ∇𝑓(x0).
Therefore there is a constant 𝜆 such that ∇𝑓(x0) = 𝜆∇𝑔(x0). �

The constant 𝜆 in Theorem11.N is called theLagrangemultiplier.So we are using 𝜆 for the
Lagrange multiplier and we used
𝜆 for eigenvalues. . . is there
some connection?

This method consists of solving the system of equations
{
∇𝑓(x0) = 𝜆∇𝑔(x0)
𝑔(x0) = 0

where 𝜆 is treated as an extra variable to ensure the number of equations
and variables is identical. Like with other methods of finding extrema,
not all solutions to the system will give absolute extrema. Just as with
critical points, we must determine which of all the solutions will give
extrema. Fortunately, this is simply done by evaluating 𝑓 at our possible
candidates. The following example illustrates the method.

Example 11.11.2
To find the extreme values of 𝑧 = 𝑥 + 2𝑦 on the circle 𝑥2 + 𝑦2 = 1, we compute
the gradients

∇𝑓 = 〈1, 2〉 and ∇𝑔 = 〈2𝑥, 2𝑦〉

and then form the system

1 = 2𝜆𝑥
2 = 2𝜆𝑦

𝑥2 + 𝑦2 = 1.

We begin with the first equation to get that 𝜆 = 1
2𝑥 . Substituting this into

the second, we obtain 2𝑥 = 𝑦. Then we use this relation in the last equation
to write 𝑥2 + (2𝑥)2 = 1. Solving this equation gives 𝑥 = ±1/

√
5; then 𝑦 =

±2/
√
5. The maximum is then 𝑧 = 1/

√
5 + 4/

√
5 =

√
5 and the minimum is

𝑧 = −1/
√
5 − 4/

√
5 = −

√
5. �

Exercise 11.11.3 Find the extrema of 𝑧 = 𝑥+𝑦 given the constraint 𝑥2+𝑦2 ≤
1.

Example 11.11.4
To find the point on the surface 𝑥2 + 𝑥𝑦 − 𝑧2 + 4 = 0 that is closest to the origin
requires us to minimize the distance function 𝐷 =

√
𝑥2 + 𝑦2 + 𝑧2. However, to

minimize this function is the same as minimizing 𝐷2 = 𝑥2 + 𝑦2 + 𝑧2, which is
simpler to do!
For this problem, our function to minimize is distance, which makes the

surface the constraint. So we have the system

2𝑥 = 𝜆(2𝑥 + 𝑦)

2𝑦 = 𝜆𝑥

2𝑧 = −2𝜆𝑧

𝑥2 + 𝑥𝑦 − 𝑧2 + 4 = 0



§11.11 the lagrange multiplier 489

The third equation simplifies to 𝜆 = −1, and we use this value in the first
equation to get that 𝑦 = −4𝑥. Using this relation and the value of 𝜆 in the
second equation, we find that 𝑥 = 0. Thus, 𝑦 = 0 and 𝑧 = ±2. Hence, there are
two points on the surface closest to the origin: (0, 0, 2) and (0, 0,−2). �

Some Applications. The method of Lagrange multipliers allows
us to find extrema of a wide variety of problems. The next few examples
illustrate business and physics applications.

Example 11.11.5
A rocket is launched with a constant acceleration of 𝑎 feet per second per
second. The rocket’s height after 𝑡 seconds is given by 𝑓(𝑡, 𝑎) = 1

2 (𝑎 − 32)𝑡2

feet. Fuel usage for 𝑡 seconds is proportional to 𝑎2𝑡 and the limited fuel capacity
of the rocket satisfies 𝑎2𝑡 = 8000. We are to find the value of 𝑎 that maximizes
the height that the rocket attains when the fuel runs out.
In order to find this value, we maximize 𝑓(𝑡, 𝑎) given the constraint

𝑎2𝑡 − 8000 = 0. Hence, we have the system

(𝑎 − 32)𝑡 = 𝜆𝑎2

1
2 𝑡
2 = 2𝜆𝑎𝑡

𝑎2𝑡 − 8000 = 0.

The first equation gives us 𝜆 = (𝑎 − 32)𝑡/𝑎2, which, when substituted into the
second equation, gives us

1
2
𝑡2 =

2𝑎 (𝑎 − 32)𝑡2

𝑎2

𝑎2𝑡2 = 4𝑎 (𝑎 − 32)𝑡2

3𝑎2𝑡2 = 128𝑎𝑡2

𝑎 = 1283 .

(Note that the solutions 𝑎 = 0 and 𝑡 = 0 are rejected because they do not satisfy
the constraint.) Hence, with an acceleration of 1283 , we have

𝑡 =
8000
𝑎2

=
8000

(128/3)2
=
1125
256

≈ 4.395 seconds.

The height the rocket attains when the fuel runs out is 𝑓(4.395, 1283 ) =
1
2 (
128
3 − 32)( 1125256 )

2 ≈ 102.997 feet. �

Next we demonstrate an application to business and economics.
In 1928 Charles Cobb and Paul Douglas published a study in which
they modeled the growth of the American economy during the period
1899–1922. They considered a simplified view of the economy in which
production output is determined by the amount of labor involved and
the amount of capital invested. Their model is the function

𝑃(𝐾, 𝐿) = 𝑎𝐾𝑚𝐿𝑛

where 𝐾 is the capitol investment (value of all facilities and equipment
in a year), 𝐿 is the labor investment (person-hours per year), 𝑃 is theThis production function is now

known as being too simplified
for complex economies like the
United States, but can still
describe some economies in
emerging markets.

total production (value of goods produced per year), and 𝑎 ,𝑚, and 𝑛 are
constants reflecting the types of capitol, labor, and available technology.
This is known as the Cobb-Douglas production function.
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Example 11.11.6
Suppose the production of a company follows the Cobb-Douglas production
model 𝑃 = 300𝐾1/3𝐿2/3. However, cost constraints on the business force
5𝐾 + 2𝐿 ≤ 180. How do we maximize production?
The answer is easy: Lagrange multipliers! Although the constraint is an

inequality, we may approach this problem in the same manner as the others.
The only thing we must take into consideration is that the Lagrange multiplier
method only gives us extrema on the boundary of the constraint. So the first
partials of the function must be searched for critical points also. We begin with
that. The partials of 𝑃 are

𝜕𝑃

𝜕𝐾
= 100𝐾−2/3𝐿2/3 and

𝜕𝑃

𝜕𝐿
= 200𝐾1/3𝐿−1/3

and we must reject the only solutions of 𝐾 = 0 and 𝐿 = 0. So we continue with
the system

100𝐾−2/3𝐿2/3 = 5𝜆

200𝐾1/3𝐿−1/3 = 2𝜆
5𝐾 + 2𝐿 − 180 = 0

The first equation tells us 𝜆 = 20𝐿2/3/𝐾2/3. We substitute this into the second
equation to get 200𝐾1/3/𝐿1/3 = 40𝐿2/3/𝐾2/3, or 5𝐾 = 𝐿. Using this relation in
the third equation, we get 𝐿 = 60; whence 𝐾 = 12. Therefore the production is
maximized at (12, 60) giving 𝑃 = 300(121/3)(602/3) ≈ $10, 526.46 per year. �

Quadratic Forms. An important theoretical application of La-
grange multipliers is in extrema of quadratic forms on the unit circle.
A quadratic form is a surface of the form

𝑓(𝑥, 𝑦) = 𝑎𝑥2 + 2𝑏𝑥𝑦 + 𝑐𝑦2

for constants 𝑎 , 𝑏, and 𝑐. (Ellipsoids, paraboloids, and hyperboloids
have such equations.) To maximize such a function, we proceed as
before, with the constraint 𝑔(𝑥, 𝑦) = 𝑥2 + 𝑦2 − 1. We have the system

2𝑎𝑥 + 2𝑏𝑦 = 2𝜆𝑥
2𝑏𝑥 + 2𝑐𝑦 = 2𝜆𝑦

𝑥2 + 𝑦2 − 1 = 0.

𝑥
𝑦

𝑧

Figure 11.11 – A quadratic
form (a hyperboloid of one
sheet) with the unit circle
projected on its surface.

But notice that the first two equations can be represented as the
matrix equation 𝐴x = 𝜆x where

𝐴 =

[
𝑎 𝑏
𝑏 𝑐

]
and x =

[
𝑥
𝑦

]
.

Moreover, x must meet the constraint 𝑥2 + 𝑦2 = 1; hence ‖x‖ = 1.
Therefore the Lagrange multiplier is actually an eigenvalue of 𝐴, and x
is a unit eigenvector of 𝐴.
Hence, the eigenvalues are the critical points of 𝑓 on the unit circle:

particularly, the absolute maximum of 𝑓 on the unit circle is the largest
eigenvalue; the absolute minimum of 𝑓 is the smallest eigenvalue. TheSo here’s the connection!
corresponding unit eigenvectors are the values that give the critical
points.
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Example 11.11.7
To find the extrema of 𝑥2 + 4𝑥𝑦 − 2𝑦2 on the unit circle, we compute the
eigeinvalues and eigenvectors of the associated matrix.
The matrix is

[ 1 2
2 −2

]
with eigenvalues −3 and 2 and unit eigenvectors

1√
5
〈1,−2〉 and 1√

5
〈2, 1〉. Hence, the maximum of 𝑓 is 2, given by ( 2√

5
, 1√
5
); and

the minimum is −3, given by ( 1√
5
,− 2√

5
). �

Problems for Section 11.11

Find the absolute extrema of the function 𝑓 subject to
the given constraint.
1 𝑓(𝑥, 𝑦) = 3𝑥2 + 3𝑦2 + 5, subject to 𝑥 − 𝑦 = 1
2 𝑓(𝑥, 𝑦) = 𝑥3𝑦, subject to 2𝑥 + 𝑦 = 5
3 𝑓(𝑥, 𝑦) = 𝑥3𝑦, subject to

√
𝑥 +

√
𝑦 = 1

4 𝑓(𝑥, 𝑦) = 𝑥3 − 𝑦3, subject to 𝑥 − 𝑦 = 2
5 𝑓(𝑥, 𝑦) = e𝑥+𝑦 , subject to 𝑥2 + 𝑦2 = 2
6 𝑓(𝑥, 𝑦, 𝑧) = 𝑥2+2𝑦2+4𝑧2, subject to 𝑥2+𝑦2+𝑧2 = 1

7 Find thepoint on the surface 𝑧 = (𝑦+1)2−(𝑥−2)2+1
nearest to the point (2,−1,−2).

8 A closed rectangular box is to be made so that its
volume is 60 cubic feet. The costs of the material
for the top and bottom are 10 cents per square foot
and 20 cents per square foot, respectively. The cost
of the sides is 2 cents per square foot.

(a) Determine the cost function 𝐶 (𝑥, 𝑦), where 𝑥
and 𝑦 are the length and width of the box.

(b) Find the dimensions of the box that will give
the minimum cost and then compute the min-
imum cost. (Zill, 1985, p. 794)

9 A clothing company makes two types of overcoats,
and the cost of manufacturing these overcoats is
𝐶 (𝑥, 𝑦) = 2𝑥2 + 6𝑦2 + 4𝑥𝑦 + 10. If a total of 20
overcoats can be made daily, how many of each
type should be made to minimize the cost? What is
the minimum cost?

10 (Calculator) Maximize the production given by
𝑃 (𝐾,𝐿) = 10𝐾0.6𝐿0.4 with constraint 2𝐾 + 3𝐿 ≤ 60.

11 Find the extrema of the quadratic form 13𝑥2−8𝑥𝑦−
2𝑦2 on the unit circle.

11.12 Two Differential Operators

A modern branch of mathematics, having achieved the art of dealing with the infinitely small, can now yield solutions in
other more complex problems of motion, which used to appear insoluble. This modern branch of mathematics, unknown
to the ancients, when dealing with problems of motion, admits the conception of the infinitely small, and so conforms to

the chief condition of motion (absolute continuity) and thereby corrects the inevitable error which the human mind cannot
avoid when dealing with separate elements of motion instead of examining continuous motion. In seeking the laws of
historical movement just the same thing happens. The movement of humanity, arising as it does from innumerable

human wills, is continuous. To understand the laws of this continuous movement is the aim of history. Only by taking an
infinitesimally small unit for observation (the differential of history, that is, the individual tendencies of man) and

attaining to the art of integrating them (that is, finding the sum of these infinitesimals) can we hope to arrive at the laws of
history.

— Leo Tolstoy

In this final section of the present chapter, we introduce two
differential operators. We have already encountered one differential
operator, the gradient. Recall that the gradient of a function 𝑓(𝑥, 𝑦, 𝑧)
is the vector

∇𝑓 =

〈
𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑦
,
𝜕𝑓

𝜕𝑧

〉
.

The gradient ∇ by itself is meaningless; it is an operator, and as such,
we take the gradient of something. The two new differential operators
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12.4 Integration in the Physical World

We speak of invention: it would be more correct to speak of discovery. The distinction between these two words is well
known: discovery concerns a phenomenon, a law, a being which already existed, but had not been perceived. Columbus

discovered America: it existed before him; on the contrary, Franklin invented the lightning rod: before him there had never
been any lightning rod.

Such a distinction has proved less evident than it appears at first glance. Torricelli has observed that when one inverts a
closed tube on a mercury trough, the mercury ascends to a certain determinate height: this is a discovery; but in doing this,
he has invented the barometer; and there are plenty of examples of scientific results which are just as much discoveries as

inventions.
— Jacques Hadamard

In this section, we present six applications of double integrals. Some
of these applications we have already encountered, and some are three-
dimen- sional analogues to familiar concepts. All are important to the
physical sciences. We begin with two straightforward ideas.

I. Volume. If 𝑓(𝑥, 𝑦) is the equation of a surface, then 𝑉 =∬
𝑅
𝑓 𝑑𝑥 𝑑𝑦 is the volume between the surface and the 𝑥𝑦-plane.

II. Area. For 𝑓(𝑥, 𝑦) = 1, we have𝐴 =
∬
𝑅
𝑑𝑥 𝑑𝑦 as the area of 𝑅.

These definitions of volume and area arise from the definition of
double integrals. Note, however, that we may use single-variable
integrals to compute the same things.
For instance, consider the region 𝑅 bounded by the 𝑥-axis, the line

𝑥 = 3, and the curve 𝑦 = 𝑥2. Using a single-variable integral, we may
compute ∫ 3

0
𝑥2 𝑑𝑥 =

𝑥3

3






3

0
= 9.

On the other hand, we may also compute the same area using a double
integral:

∫ 3

0

∫ 𝑥2

0
𝑑𝑦 𝑑𝑥 =

∫ 3

0
𝑦



𝑥2
0
𝑑𝑥 =

∫ 3

0
𝑥2 𝑑𝑥 = 9.

The same goes for volume. In Volume 1, we determined the volume
of a solid with defined cross-sections. The following is one such
problem.

Example 12.4.1
Suppose the region 𝑅 in the 𝑥𝑦-plane, bounded by the 𝑥-axis, the line 𝑥 = 3,
and the curve 𝑦 = 𝑥2, is the base of a solid whose cross-sections are isosceles
right triangles with a leg of each triangle in 𝑅. We may find the volume by first
finding an expression for the area of a cross section. Since the cross sections are
triangles of height 𝑥2 and base 𝑥2, we have 𝐴(𝑥) = 12𝑥

4. Then we compute

∫ 3

0

𝑥4

2
𝑑𝑥 =

𝑥5

10






3

0
= 24.3.

On the other hand, we could use a double integral. The region 𝑅 for our
double integral is the same, but in this interpretation, we want the volume of
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the solid above 𝑅 and below the plane 𝑦 = 𝑧. Hence, we compute

∫ 3

0

∫ 𝑥2

0
𝑦 𝑑𝑦 𝑑𝑥 =

∫ 3

0

𝑦2

2






𝑥2

0
𝑑𝑥 =

∫ 3

0

𝑥4

2
𝑑𝑥 = 24.3.

Of course, using adouble integral inplace of a single integralmay complicate
things if one cannot easily determine the surface under which we wish to find
the volume. �

The next application concerns the mass of a lamina, or thin plate,
sheet, or layer of a larger composite structure. A lamina will usually be
defined by a region 𝑅.

III. Mass. If 𝜌(𝑥, 𝑦) is the equation of the density of a lamina (in
mass per unit area), then𝑀 =

∬
𝑅
𝜌 𝑑𝑥 𝑑𝑦 is the mass of 𝑅.

IV. Center of Mass. If 𝜌 is density, then the center of mass (�̄�, �̄�)
of the lamina represented by 𝑅 is given by

�̄� =
1
𝑀

∬
𝑅

𝑥𝜌 𝑑𝑥 𝑑𝑦, �̄� =
1
𝑀

∬
𝑅

𝑦𝜌 𝑑𝑥 𝑑𝑦

where𝑀 is the mass of 𝑅.

The use of the Greek letter rho
(𝜌) is traditional notation for
density. Example 12.4.2

We compute the center of mass of the lamina covering the triangular region
with vertices (0, 0), (1, 0), and (1, 2), given that the plate’s density is 𝜌(𝑥, 𝑦) =
12𝑥 + 12𝑦 + 6.
First, we find𝑀, the mass of the plate:

∫ 1

0

∫ 2𝑥

0
(12𝑥 + 12𝑦 + 6) 𝑑𝑦 𝑑𝑥 =

∫ 1

0

(
12𝑥𝑦 + 6𝑦2 + 6𝑦

)


2𝑥
0
𝑑𝑥

=
∫ 1

0

(
48𝑥2 + 12𝑥

)
𝑑𝑥 = 16𝑥3 + 6𝑥2




1
0
= 22.

Now we have

�̄� =
1
22

∫ 1

0

∫ 2𝑥

0

(
12𝑥2 + 12𝑥𝑦 + 6𝑥

)
𝑑𝑦 𝑑𝑥

=
1
22

∫ 1

0

(
12𝑥2𝑦 + 6𝑥𝑦2 + 6𝑥𝑦

)


2𝑥
0
𝑑𝑥 =

1
22

∫ 1

0

(
48𝑥3 + 12𝑥2

)
𝑑𝑥

=
1
22

(
12𝑥4 + 4𝑥3

)


1
0
=
1
22

(16) =
8
11

.

Similarly, we find �̄� = 9
11 ; hence, the center of mass is at the point

(
8
11 ,

9
11

)
. �

𝑥

𝑦

�

8
11

9
11

1

2

𝑂

Figure 12.8 – The center of
mass of the lamina from
Example 12.4.2.

V.Moment of Inertia. If 𝜌 is density, and 𝑅 represents a lamina,
the moments of inertia about the 𝑥-axis and 𝑦-axis are

𝐼𝑥 =
∬
𝑅

𝑦2𝜌 𝑑𝑥 𝑑𝑦, 𝐼𝑦 =
∬
𝑅

𝑥2𝜌 𝑑𝑥 𝑑𝑦,

and the moment of inertia about the origin is 𝐼𝑂 = 𝐼𝑥 + 𝐼𝑦.
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The moment of inertia quantifies the resistance of a physical object
to angular acceleration. The moment of inertia is to rotational motion
as mass is to linear motion. An object’s moment of inertia depends on
its shape and the distribution of mass within that shape: the greater the
concentration of material away from the object’s center, the larger the
moment of inertia.
This is calculated in the above manner because the definition of the

moment of inertia is the product of the mass times the square of the
distance from an axis. The mass is

∬
𝑅
𝜌 𝑑𝑥 𝑑𝑦 and the distance from

the 𝑥-axis to a point of mass is 𝑦; hence the moment aound the 𝑥-axis
is 𝐼𝑥 =

∬
𝑅
𝑦2𝜌 𝑑𝑥 𝑑𝑦. Likewise for the moment around the 𝑦-axis.

Example 12.4.3
We compute the moments of inertia of the lamina covering the triangular
region with vertices (0, 0), (1, 0), and (1, 2), given that the plate’s density is
𝜌(𝑥,𝑦) = 12𝑥 + 12𝑦 + 6.
The moment of inertia about the 𝑥-axis is given by

𝐼𝑥 =
∫ 1

0

∫ 2𝑥

0

(
12𝑥𝑦2 + 12𝑦3 + 6𝑦2

)
𝑑𝑦 𝑑𝑥

=
∫ 1

0

(
4𝑥𝑦3 + 3𝑦4 + 2𝑦3

)


2𝑥
0

=
∫ 1

0

(
80𝑥4 + 16𝑥3

)
𝑑𝑥

= 16𝑥5 + 4𝑥4



1
0
= 20.

Similarly, the moment of inertia about the 𝑦-axis is 635 ; hence the moment of
inertia about the origin is 635 + 20 = 1635 . �

VI. Surface Area. The surface area of a surface in space over a
region 𝑅 in the 𝑥𝑦-plane is proved as the following theorem.

THEOREM 12.C (Area of a Surface) If 𝑧 = 𝑓(𝑥, 𝑦) is defined and has
continuous partial derivatives in 𝑅 ⊆ 𝐷, then the surface area of a surface
in space is

𝑆 =
∬
𝑅

√
1 +

(
𝜕𝑧

𝜕𝑥

)2
+

(
𝜕𝑧

𝜕𝑦

)2
𝑑𝑥 𝑑𝑦.

Proof. Let (𝑥𝑖 , 𝑦𝑖) be a point of the 𝑖th rectangle of the subdivision of
𝑅 ⊆ 𝐷. (See Figure 12.9.) Then the tangent plane at (𝑥𝑖 , 𝑦𝑖) is

𝑧 − 𝑧𝑖 =
𝜕𝑧

𝜕𝑥
(𝑥 − 𝑥𝑖) +

𝜕𝑧

𝜕𝑦
(𝑦 − 𝑦𝑖)

where the partials are evaluated at (𝑥𝑖 , 𝑦𝑖). Let 𝑆𝑖 be the area of the
part of tangent plane above the 𝑖th rectangle. Then 𝑆𝑖 is the area of a
parallelogram whose projection is a rectangle on 𝑅 with area 𝐴𝑖 . Let n𝑖
be the normal to 𝑧 at (𝑥𝑖 , 𝑦𝑖); hence,

n𝑖 = −
𝜕𝑧

𝜕𝑥
i −

𝜕𝑧

𝜕𝑦
j + k.
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Then 𝑆𝑖 = 𝐴𝑖 sec(𝛾𝑖), where 𝛾𝑖 is the angle between n𝑖 and k. Note that

cos(𝛾𝑖) =
n𝑖 · k

| |n𝑖 | | | |k| |
=

1√
1 +

(
𝜕𝑧

𝜕𝑥

)2
+

(
𝜕𝑧

𝜕𝑦

)2

so that

sec(𝛾𝑖) =

√
1 +

(
𝜕𝑧

𝜕𝑥

)2
+

(
𝜕𝑧

𝜕𝑦

)2
.

Hence, if we let 𝑑𝑖 denote the diagonal of the 𝑖th rectangle,

lim
𝑛→∞
𝑑→0

𝑛∑
𝑖=1

𝑆𝑖 = lim
𝑛→∞
𝑑→0

𝑛∑
𝑖=1

𝐴𝑖 sec(𝛾𝑖)

= lim
𝑛→∞
𝑑→0

𝑛∑
𝑖=1

𝐴𝑖

√
1 +

(
𝜕𝑧

𝜕𝑥

)2
+

(
𝜕𝑧

𝜕𝑦

)2

=
∬
𝑅

√
1 +

(
𝜕𝑧

𝜕𝑥

)2
+

(
𝜕𝑧

𝜕𝑦

)2
𝑑𝑥 𝑑𝑦 �

𝑥

𝑦

𝑧

�

�

n𝑖
𝛾𝑖

(𝑥𝑖, 𝑦𝑖)

𝐴𝑖

Figure 12.9 – The
derivation of the surface
area.

Example 12.4.4
We use the previous theorem to compute the surface area of the paraboloid
𝑧 = 𝑥2 + 𝑦2 bounded by 𝑥2 + 𝑦2 = 4.
We have that −

√
4 − 𝑥2 ≤ 𝑦 ≤

√
4 − 𝑥2 and −2 ≤ 𝑥 ≤ 2 Thus,

𝐴 =
∬
𝑅

√
1 + (2𝑥)2 + (2𝑦)2 𝑑𝑥 𝑑𝑦 =

∬
𝑅

√
1 + 4𝑥2 + 4𝑦2 𝑑𝑥 𝑑𝑦.

This integral is tedious; so we change coordinates to polar. Then the region is
the complete circular disk of radius 2. Hence, 0 ≤ 𝑟 ≤ 2 and 0 ≤ 𝜃 ≤ 2𝜋, and,
since the Jacobian is 𝑟, we have

𝐴 =
∫ 2𝜋

0

∫ 2

0
𝑟
√
4𝑟2 + 1 𝑑𝑟 𝑑𝜃 =

∫ 2𝜋

0

1
12

(
4𝑟2 + 1

)3/2




2

0
𝑑𝜃

=
∫ 2𝜋

0

1
12

(
173/2 − 1

)
𝑑𝜃 =

𝜋

6
(173/2 − 1).

This is approximately 36.177. �

Problems for Section 12.4

1 Show the computations that verify the values of �̄�
from Example 12.4.2 and 𝐼𝑦 from Example 12.4.3.

2 Compute the moment of inertia about the origin
for the triangular lamina with vertices (0, 0), (1, 0),
and (0, 3) and density 𝜌(𝑥, 𝑦) = 6.

3 Compute the center ofmass of the unit square in the
first quadrant with density 𝜌(𝑥, 𝑦) = 𝑦 arctan(𝑥).

4 Using a double integral, compute the volume of
the solid whose base is the region 𝑅 in the 𝑥𝑦-

plane bounded by the 𝑥-axis, the line 𝑥 = 𝜋
2 , the

line 𝑥 = 0, and the curve 𝑦 = cos(𝑥), and whose
cross-sections are rectangles with width cos(𝑥) and
height 5.

5 Compute the surface area of the hemisphere
𝑧 =

√
1 − 𝑥2 − 𝑦2 using a double integral.

6 Compute the surface area of the cone 2𝑥2 + 2𝑦2 =
5𝑧2, 𝑧 ≥ 0, bounded by 𝑥2 + 𝑦2 = 4.


