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Preface

Background

The AP Calculus Problem Book was inspired by

Sergio Stadler’s “Book of Exercises” at the Marist

School in Atlanta. Many of the textbooks in popular

use in the early twenty-first century were not written

with AP Calculus
1

in mind, and Mr. Stadler wrote a

photo-copied, spiral-bound group of worksheets (150

pages!) to supplement his textbook. I was thrilled

with the idea, since the textbook I was using—while a

very good textbook—was short on AP-type problems

and Exam preparation. So I wrote my own “Book.”

In doing so, I realized that it could be more than just

bound worksheets. I could include extra practice prob-

lems, practice tests, the syllabus, formula sheets, cal-

culus “discovery” labs, TI-83 calculator instructions,

and advice on studying math.

So the first AP Calculus Problem Book I wrote in

2002 was similar to the “Book of Exercises”: photo-

copied and spiral-bound, but had swelled to 250 pages.

I copied everything, bought the coils, and bound it us-

ing a coil-binding machine the school had purchased.

This was made available only to my students, which

they purchased for $10 per copy (the money going to

the school’s Math Team). Over the next few years,

I made corrections and tweaks each year, and spent

hours and hours each summer assembling the follow-

ing year’s Problem Book.

But something unexpected happened. The stu-

dents liked the Problem Book much more than the text-

book. So I started teaching from the Problem Book
more and tailoring my lessons to fit seamlessly with

sections of the Problem Book. In addition to home-

work assignments, I started using problems as intro-

ductions to material, as “think-pair-share” work, as

group work, as options for differentiated instruction,

and as ready-made assignments for those days a sub-

stitute was needed. By 2007, I stopped using the text-

book entirely, and just used the Problem Book.

As wonderful as I think the Problem Book is, I

stopped using it in 2010. In 2007, I started writing an

actual textbook, trying to incorporate what I’d learned

from using just the Problem Book and improving what

I found lacking in the popular textbooks. I also grew

tired and students grew frustrated with the traditional

approach to calculus: the old “precal review, limits,

derivatives, integrals” sequence which I felt does not

get across the importance or uniqueness of calculus

soon enough or adequately enough. So the textbook I

wrote
2

is a non-traditional way of approaching calcu-

lus, but it also incorporates many of the ideas I learned

using the Problem Book, as well as some of the prob-

lems (and a bunch of new ones).

Why a New Edition?

Over the last fifteen years, I learned a lot about two

things: teaching calculus and the mathematical typset-

ting program, LATEX. I viewed the old Problem Book
with the same wincing disdain a great artist might have

1
I should note here that this book is in no way associated with, endorsed by, or written with the knowledge of anyone at College Board

or Educational Testing Service. So there!

2
“Calculus: Dynamic Mathematics” available on my website www.drchuckgarner.com in both AB and BC versions.
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for their early work. I decided a few years ago that the

Problem Book needed updating. What follows are the

highlights in the new edition.

• The style of some problems has been updated to

match more modern wording.

• The formatting on each page has changed to al-

low for more problems (there are one thousand

more problems in this new edition).

• All the diagrams and graphs were re-drawn.

• The tables have been re-formatted so their lay-

out is consistent.

• There is a second end-of-chapter test to con-

clude each of the first seven chapters.

• There is an AP-style Scoring Guideline for each

free-response problem in each end-of-chapter

test.

• There are three new topics in the chapter of post-

AP exam problems, to hopefully suit more uses.

• Problems have not just been added to existing

pages, but there are entirely new sections of

problems added to almost every chapter.

• Missing from the previous editions were prob-

lems expressing a definite integral as the limit

of a Riemann sum, and vice versa. Such prob-

lems are now included.

• More answers to existing problems are included

as well as answers to many of the new problems.

I am quite pleased with the new edition, but I’m sure

typographical errors persist, and it is quite possible

that some of my answers are incorrect. Please contact

me if you notice anything in error.

One major change over previous editions is the re-

moval of the TI-83 Calculator Labs. With the ever in-

creasing change in TI calculators and operating sys-

tems, the increasing use of computer and web-based

graphing software, and the availability of so many TI

programs and their instruction on the internet, I felt

that keeping the Labs which referenced TI-83s and

programs from 13 years ago would be an anachro-

nism. So out they went. However, everything else

present in the previous edition is retained in this edi-

tion, including retaining Simpson’s rule problems even

though Simpson’s rule is not part of the AP Course De-

scription.
3

And speaking of the AP Course Descrip-

tion. . .With the recent (2016-17) change in the AP

Course Description, the topic of l’Hôpital’s rule is

now an AB topic and no longer solely the domain of

BC. I thought carefully about moving the section on

l’Hôpital’s rule out of Chapter 6—a chapter designed

for BC only topics—and into Chapter 2 or 3, but I

really like the problems in the l’Hôpital’s rule section

which rely on knowledge of integration. So I left it

where it is.
4

Another change the new Course Description

brought with it was the reduction in answer choices

for the multiple-choice questions, from five to four. I

debated whether to make a corresponding change in

the multiple-choice questions in the Problem Book,

but ultimately decided against it. With answers to the

multiple-choice problems in the back of the book, I

felt that having five choices rather than four would not

make the problems any more difficult.

A Note on Notation

There are two notational aspects of the Problem
Book that deserve a mention. One is the use parenthe-

ses, and the other is the exponential function.

We have all seen the “joke” (or student mistake?)

of sin 𝑥∕𝑥 = sin. Of course the 𝑥’s do not cancel, and

the joke relies on the fact that most of us do not use

parentheses consistently to indicate a function’s argu-

ment. But this is a real problem for students who do

not really understand that all of these things—sin, cos,
ln, log, and so on—are names of functions. What is

really bad is the lack of acknoweldgement that, while

students agree that 𝑓 (𝑥) is a function, sin 𝑥 and ln 𝑥
somehow are not. In this new edition of the Problem
Book, I have consistently used parentheses to indicate

the argument of a function. I have been following this

3
Also retained are the interesting, humorous, apropos, questionable, silly, and sometimes puzzling quotes as footnotes, which begin

after this dreadfully long preface with the boring unquotable footnotes.

4
The statement that Chapters 1 through 5 are AB and 1 through 7 are BC is no longer an accurate statement, but it’s true except for

this one l’Hôpital’s rule section.
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convention in my classes for years, and it actually does

seem to help students realize that these are functions

(which does wonders when it comes time for the chain

rule or integration by substitution). So there are no

instances of “sin 𝑥” in this book, only “sin(𝑥)”. This

is true even of constants, such as ln(2) or arctan(1) or

csc(𝜋). Notice the similarity with commonly-accepted

“𝑓 (4)” to indicate the evaluation of the function 𝑓 at

the argument 4; then “ln(2)” is the evaluation of the

natural logarithm function at the argument 2. I believe

this consistency in use of parentheses helps students.

And speaking of functions. . . The exponential

function is one of the most important functions in

mathematics. However, when we see “𝑒
𝑥
” what con-

ception pops in our heads? Is it a function, or is it a

number raised to a power? I argue that the true im-

portance of the exponential is as a function—and we

should indicate it as such.

Therefore, in this book I have use a non-italicized

e to indicate the name of this function, so that you will

not see “𝑒
𝑥
” but “e𝑥”. The number 2.71818. . . is sim-

ply the exponential function evaluated at 1: e1 = e. I

have been using this convention in my classes for years

also, and it clears up confusion about what e𝑥 actually

is.
5

This also explains why logarithms have a change-
of-base formula, because exponentials have one too!

An exponential function like 3𝑥 is really the exponen-

tial with a change of base: 3𝑥 = e𝑥 ln(3). The idea that

e𝑥 is a number raised to a power is wrong—until the

argument of the function takes on a value. Until then,

it is as much of a function as sin(𝑥).
I also prefer the notation “arc” instead of the expo-

nent of −1 to indicate the inverse trigonomatric func-

tions. This reduces confusion with the notation of an

exponent of −1 to indicate the reciprocal. So I have

avoided using notation such as tan−1(𝑥) and use ex-

clusively arctan(𝑥) in this book.
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5
It’s a function! Indeed, in my classes I sometimes use “exp(𝑥)” to really hammer this in. That may seem strange, but we have two-

or three-letter abbreviations for all other common functions (logarithm is log for instance) so why not exp for the exponential?
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3.7 Problems of Motion
1122. A car is moving along the highway according to

the given equation, where 𝑥 meters is the directed dis-

tance of the car from a given point 𝑃 at 𝑡 hours. Find

the values of 𝑡 for which the car is moving to the right

and when it is moving to the left. Draw a diagram to

describe the motion of the car.

𝑥 = 2𝑡3 + 15𝑡2 + 36𝑡 + 2a)

𝑥 = 2𝑡3 + 9𝑡2 − 60𝑡 − 7b)

1123. A car is moving along the freeway according to

the given equation, where 𝑥 meters is the directed dis-

tance of the car from a given point 𝑃 at 𝑡 hours. Find

the values of 𝑡 for which the acceleration is zero, and

then find the position of the car at this time.

𝑥 = 1
4 𝑡

4 + 1
6 𝑡

3 − 𝑡2 + 1a)

𝑥 = −3
√
𝑡 − 1

12
√
𝑡

for 𝑡 > 0b)

1124. A snail moves along the 𝑥-axis so that at time 𝑡

its position is given by 𝑥(𝑡) = 3 ln(2𝑡−5), for 𝑡 > 5∕2.

What is the position and the velocity of the snail

at time 𝑡 = 3?

a)

When is the snail moving to the right, and when

is it moving to the left?

b)

1125. An ant moves along the 𝑥-axis so that at time 𝑡

its position is given by 𝑥(𝑡) = 2 cos(𝜋𝑡2∕2), for values

of 𝑡 in the interval [−1, 1].

Find an expression for the velocity of the ant at

any given time 𝑡.

a)

Find an expression for the acceleration at any

given time 𝑡.

b)

Determine the values of 𝑡 for which the ant is

moving to the right. Justify your answer.

c)

Determine the values of 𝑡 for which the ant

changes direction. Justify your answer.

d)

1126. A particle is moving along the 𝑥-axis so that its

position is given by

𝑥(𝑡) = 3𝜋
2
𝑡
2 − sin

(3𝜋
2
𝑡
2
)
,

for 0 < 𝑡 ≤ 2.

Find an expression for the velocity of the parti-

cle at any given time 𝑡.

a)

Find an expression for the acceleration at any

given time 𝑡.

b)

Find the values of 𝑡 for which the particle is at

rest.

c)

Find the position of the particle at the time(s)

found in part c).

d)

1127. At time 𝑡 ≥ 0, the velocity of a body moving

along the 𝑥-axis is 𝑣(𝑡) = 𝑡
2 − 4𝑡 + 3.

Find the body’s acceleration each time the ve-

locity is zero.

a)

When is the body moving forward? Backward?b)

When is the body’s velocity increasing?

Decreasing?

c)

1128. The position of a ball moving along a straight

line is given by 𝑠(𝑡) = 4
3 e

3𝑡 −8𝑡.

Write an expression for the velocity at any given

time 𝑡.

a)

Write an expression for the acceleration at any

given time 𝑡.

b)

Find the values of 𝑡 for which the ball is at rest.c)

Find the position of the ball at the time(s) found

in part c).

d)
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3.9 More Tangents and Derivatives
In problems 1155 through 1161, find the tangent lines
to each of the following at 𝑥 = 0.

1155. sin(𝑥)

1156. cos(𝑥)

1157. tan(𝑥)

1158. e𝑥

1159. ln(1 + 𝑥)

1160. (1 + 𝑥)𝑘, for nonzero constant 𝑘.

1161. (1 − 𝑥)𝑘, for nonzero constant 𝑘.

1162. Using the tangent lines found above, approxi-

mate the values of sin(0.1); cos(0.1); tan(0.1); e0.1;

ln(1.1); (1.1)5; and (0.9)4.

1163. As noted in problems 1160 and 1161, 𝑘 is any

nonzero constant. Using the tangent found above,

approximate

√
1.06;

3
√
1.06; 1∕1.06; and 1∕(1.06)2.

Then, using your calculator, determine the difference

in the approximation compared to the more accurate

value given by the calculator.

1164. Let 𝑓 be a continuous function on [0, 3] that has

the following signs and values as in the table below.

𝑥 𝑓 (𝑥) 𝑓
′(𝑥) 𝑓

′′(𝑥)
0 0 3 0

0 < 𝑥 < 1 pos. pos. neg.

1 2 0 −1
1 < 𝑥 < 2 pos. neg. neg.

2 0 dne dne

2 < 𝑥 < 3 neg. neg. neg.

3 −2 −3 0

Find the absolute extrema of 𝑓 and where they oc-

cur; find any points of inflection; and sketch a possible

graph of 𝑓 .

1165. Let 𝑓
′(𝑥) = (𝑥 − 1) e−𝑥 be the derivative of a

function 𝑓 . What are the critical points of 𝑓? On

what intervals is 𝑓 increasing or decreasing? At what

points, if any, does 𝑓 have local extrema?

1166. Let 𝑓
′(𝑥) = (𝑥 − 1)2(𝑥 − 2) be the derivative of

a function 𝑓 . What are the critical points of 𝑓? On

what intervals is 𝑓 increasing or decreasing? At what

points, if any, does 𝑓 have local extrema?

1167. A particle moves along the 𝑥-axis as described

by 𝑥(𝑡) = 3𝑡2 − 2𝑡3. Find the acceleration of the parti-

cle at the time when the velocity is a maximum.

1168. Find the values of 𝑎, 𝑏, 𝑐, and 𝑑 such that the cu-

bic 𝑓 (𝑥) = 𝑎𝑥
3+𝑏𝑥2 +𝑐𝑥+𝑑 has a relative maximum

at (2, 4), a relative minimum at (4, 2), and an inflection

point at (3, 3).

1169. Show that the point of inflection of 𝑓 (𝑥) = 𝑥(𝑥−
6)2 lies midway between the relative extrema of 𝑓 .

1170. Suppose𝐻(𝑥) is a differentiable function whose

graph passes through the points (2,−5) and (5, 4). De-

termine whether each statement must be true or could

be false. Explain your reasoning for each statement.

I. 𝐻(𝑥) is increasing on the interval (2, 5).
II. The graph of 𝐻(𝑥) has 𝑥-intercept (11∕3, 0).

III. 𝐻
′(𝑐) = 0 for some 𝑐 in the interval (−5, 4).

IV. 𝐻
′(𝑐) = 3 for some 𝑐 in the interval (2, 5).

V. 𝐻
′(𝑐) = 3 for all 𝑐 in the interval (2, 5).

1171. The functions 𝑔 and ℎ are differentiable for all

real numbers. The table below gives values of these

two functions and their first derivatives at certain

points. The function 𝑓 is given by 𝑓 (𝑥) = 2𝑔 (ℎ(𝑥)) −
17.

𝑥 𝑔(𝑥) ℎ(𝑥) 𝑔
′(𝑥) ℎ

′(𝑥)
0 5 1 6 −3
1 8 3 5 −1
2 11 6 −1 1
3 −2 2 −3 4

For 0 < 𝑐 < 3, must there be a value of 𝑐 such

that 𝑓 (𝑐) = 2? Justify your answer.

a)

For 0 < 𝑑 < 3, must there be a value of 𝑑 such

that 𝑓
′(𝑑) = 2? Justify your answer.

b)

Using values as given in the table, compute

𝑓
′(3). Show your work.

c)

When introduced at the wrong time or place, good logic may be the worst enemy of good teaching. —George Polya
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4.3 The Method of Substitution
Find the following indefinite integrals.

1348.
ˆ

−2𝑥
√
9 − 𝑥2 𝑑𝑥

1349.
ˆ
𝑥

(
4𝑥2 + 3

)3
𝑑𝑥

1350.
ˆ

𝑥
2

(
1 + 𝑥3

)2 𝑑𝑥

1351.
ˆ (

𝑥
2 + 1

9𝑥2

)
𝑑𝑥

1352.
ˆ
𝑥
2 + 3𝑥 + 7
√
𝑥

𝑑𝑥

1353.
ˆ (

𝑡
3

3
+ 1

4𝑡2

)
𝑑𝑡

1354.
ˆ

sin(2𝑥) 𝑑𝑥

1355.
ˆ

cos(6𝑥) 𝑑𝑥

1356.
ˆ

tan4(𝜃) sec2(𝜃) 𝑑𝜃

1357.
ˆ

sin(𝜃)
cos2(𝜃)

𝑑𝜃

1358.
ˆ

cos
(
𝜃

2

)
𝑑𝜃

1359.
ˆ
𝑥

√
2𝑥 + 1 𝑑𝑥

1360.
ˆ
𝑥
2
√
1 − 𝑥 𝑑𝑥

1361.
ˆ √

4𝑥 − 3 𝑑𝑥

1362.
ˆ
𝑥
4
√
3𝑥5 − 4 𝑑𝑥

1363.
ˆ

3𝑥6
(2𝑥7 − 1)5

𝑑𝑥

1364.
ˆ

4𝑥
√
5𝑥 − 2 𝑑𝑥

1365.
ˆ

12𝑥2 sin
(
4𝑥3

)
𝑑𝑥

1366.
ˆ

4 e𝑥 cos(4 e𝑥) 𝑑𝑥

1367.
ˆ

33𝑡 ln(3) 𝑑𝑡

1368.
ˆ

62𝑥2−3𝑥 ln(6) 𝑑𝑥

1369.
ˆ

25𝑥 𝑑𝑥

1370.
ˆ

1
√
5𝑥 + 4

𝑑𝑥

1371.
ˆ

3𝑦
√
7 − 3𝑦2 𝑑𝑦

1372.
ˆ

cos(3𝑧 + 4) 𝑑𝑧

1373.
ˆ

1
𝑡
2 e

1∕𝑡
𝑑𝑡

1374.
ˆ

sec
(
𝑥 + 𝜋

2

)
tan

(
𝑥 + 𝜋

2

)
𝑑𝑥

1375.
ˆ

−csc2(𝜃)
√
cot(𝜃) 𝑑𝜃

1376.
ˆ

𝑥

𝑥
2 + 4

𝑑𝑥

1377.
ˆ

1
√
1 − 4𝑥2

𝑑𝑥

1378.
ˆ

e𝑥
1 + e2𝑥

𝑑𝑥

1379.
ˆ

1
𝑥

𝑑𝑥

The science of pure mathematics... may claim to be the most original creation of the human spirit. —Alfred North Whitehead
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4.14 How Do I Find the Area Under Thy Curve? Let Me Count the
Ways...

In the following four problems, find the area under the
curve on the interval [𝑎, 𝑏] by using
a) a right-hand Riemann sum on 𝑛 equal subintervals;
b) a left-hand Riemann sum on 𝑛 equal subintervals;
c) 2 trapezoids on equal subintervals;
d) Simpson’s rule with 2 parabolas on equal subinter-
vals; and
e) a definite integral.

1549. 𝑦 = 2𝑥 + 3; [0, 4]; 𝑛 = 4

1550. 𝑦 = 𝑥
2 + 2; [1, 3]; 𝑛 = 4

1551. 𝑦 = 9 − 𝑥2; [0, 3]; 𝑛 = 6

1552. 𝑦 = 𝑥
3 + 1; [1, 2]; 𝑛 = 2

Find the exact area of the region bounded by the given
curves.

1553. 𝑦 = 16 − 𝑥2, 𝑦 = 0, 𝑥 = 0, 𝑥 = −2

1554. 𝑦 = 𝑥
3 + 4, 𝑦 = 0, 𝑥 = 0, 𝑥 = 1

1555. 𝑦 = e2𝑥, 𝑦 = 0, 𝑥 = ln(2), 𝑥 = ln(3)

1556. 𝑦 = tan(𝑥), 𝑦 = 0, 𝑥 = 𝜋∕4

1557. 𝑦 = 4
1 + 𝑥2

, 𝑦 = 0, 𝑥 = 0, 𝑥 = 1

1558. Determine the area of the region enclosed by the

graphs of 𝑓 (𝑥) = 9𝑥+ 6𝑥2 and 𝑔(𝑥) = 3𝑥+ 5𝑥2 + 𝑥3.

1559. Determine the area of the region enclosed by the

graphs of 𝑓 (𝑥) = 𝑥
2 − 4𝑥 and 𝑔(𝑥) = 𝑥

3 − 6𝑥2 + 8𝑥.

Find the average value of each function over the given
interval.

1560. 𝐹 (𝑥) = 2
√
𝑥 − 1; [1, 2]

1561. 𝐺(𝑥) = e−𝑥; [0, 1]

1562. 𝐽 (𝑥) = 𝑥𝑛; [1, 2] for 𝑛 > 1

1563. 𝑊 (𝑥) = 3 cos(3𝑥); [0, 𝜋∕6]

In problems 1564 through 1568, 𝑠(𝑡) is position, 𝑣(𝑡)
is velocity, and 𝑎(𝑡) is acceleration. Find both the net
distance and the total distance traveled by a particle
with the given position, velocity, or acceleration func-
tion.

1564. 𝑣(𝑡) = 𝑡
2 − 5𝑡 + 6, where 0 ≤ 𝑡 ≤ 3

1565. 𝑠(𝑡) = 3𝑡3 − 𝑡, where 0 ≤ 𝑡 ≤ 2

1566. 𝑎(𝑡) = 2𝑡 − 9, where 0 ≤ 𝑡 ≤ 3 and 𝑣(2) = 13

1567. 𝑎(𝑡) = −2𝑡 + 1, where 0 ≤ 𝑡 ≤ 3 and 𝑣(0) = 0

1568. 𝑣(𝑡) = ecos(𝑡∕2) sin(𝑡∕2), where 0 ≤ 𝑡 ≤ 4𝜋

1569. Particle 𝑋 moves on the 𝑥-axis such that its po-

sition at time 𝑡, for 0 ≤ 𝑡 < 𝜋∕2, is 𝑥 = 1 − tan(𝑡).
Particle 𝑌 moves on the 𝑦-axis with its position given

by 𝑦 = sec(𝑡), for 0 ≤ 𝑡 < 𝜋∕2. Find the minimum

distance that 𝑋 and 𝑌 will be apart.

1570. [Calculator] A sprinter who runs the 100 me-

ter dash in 10.2 seconds accelerates at a constant rate

for the first 25 meters and then continues at a constant

speed for the rest of the race. Find the sprinter’s accel-

eration.

1571. In the year 2518 AD a spaceship is coming in for

a horizontal landing on the moon at 2000 meters per

second. The spaceship is to be slowed by an electro-

magnetic landing track so that during touchdown its

velocity 𝑣 will obey the law 𝑣(𝑡) = 2000 − 20𝑡 where

𝑡 is in seconds.

At what time 𝑡 will the spaceship stop?a)

What is the deceleration of the spaceship? Indi-

cate units of measure.

b)

What is the total distance covered between

touchdown and the spaceship’s final stop?

c)

Don’t confuse being busy with accomplishment. —Anonymous
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4.21 AP-Style Integrals Test—Version 1

Section One: Multiple-Choice — No Calculators
Time—30 minutes Number of Questions—15

The scoring for this section is determined by the formula 𝐶 × 1.8, where 𝐶 is the number of correct

responses. The maximum possible points earned on this section is 27, which represents 50% of the

total test score.

Directions: Solve each of the following problems. After examining the form of the choices, decide

which is the best of the choices given and fill in the corresponding choice on your answer sheet. Do

not spend too much time on any one problem.

Good Luck!

1637.
ˆ

sin(3𝜃) 𝑑𝜃 =

3 cos(3𝜃) + 𝐶(A) −3 cos(3𝜃) + 𝐶(B)

−cos(3𝜃) + 𝐶(C)
1
3 cos(3𝜃) + 𝐶(D)

−1
3 cos(3𝜃) + 𝐶(E)

1638.
ˆ

3𝑥2𝑥 𝑑𝑥 =

3𝑥2+1
𝑥
2 + 1

+ 𝐶(A)
3𝑥2

ln(9)
+ 𝐶(B)

3𝑥2 ln(3) + 𝐶(C) 3𝑥3∕3 + 𝐶(D)

None of these(E)

1639.
ˆ 5

0

𝑑𝑥

√
3𝑥 + 1

=

1
2(A)

2
3(B) 1(C) 2(D) 6(E)

1640. The average value of 𝑔(𝑥) = (𝑥 − 3)2 in the in-

terval [1, 3] is

2(A)
2
3(B)

4
3(C)

8
3(D)

10
3(E)

1641. If

ˆ
𝑘

0

sec2(𝑥)
1 + tan(𝑥)

𝑑𝑥 = ln(2), then the value of

𝑘 is

𝜋

6 .(A)
𝜋

4 .(B)
𝜋

3 .(C)
𝜋

2 .(D) 𝜋.(E)

1642. Which of the following statements are true?

I. If the graph of a function is always

concave up, then the left-hand Riemann

sums with the same subdivisions over

the same interval are always less than

the right-hand Riemann sum.

II. If the function 𝑓 is continuous on

the interval [𝑎, 𝑏] and
´
𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥 = 0,

then 𝑓 must have at least one zero

between 𝑎 and 𝑏.

III. If 𝑓
′(𝑥) > 0 for all 𝑥 in an interval,

then the function 𝑓 is concave up in

that interval.

I only(A) II only(B) III only(C)

II, III only(D) None are true(E)
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1643. Let 𝑓 (𝑥) be defined as below. Evaluate´ 6
0 𝑓 (𝑥) 𝑑𝑥.

𝑓 (𝑥) =
⎧
⎪
⎨
⎪
⎩

𝑥 0 < 𝑥 ≤ 2
1 2 < 𝑥 ≤ 4
𝑥∕2 4 < 𝑥 ≤ 6

5(A) 6(B) 7(C) 8(D) 9(E)

1644.
ˆ 1

0

𝑥

𝑥
2 + 1

𝑑𝑥 =

𝜋

4(A) ln
(√

2
)

(B)
1
2 (ln(2) − 1)(C)

3
2(D) ln(2)(E)

1645. There is a point between 𝑃 (1, 0) and 𝑄(e, 1) on

the graph of 𝑦 = ln(𝑥) such that the tangent to the

graph at that point is parallel to the line through points

𝑃 and 𝑄. The 𝑥-coordinate of this point is

e −1(A) e(B) −1(C)

1
e−1

(D)
1

e+1
(E)

1646. The acceleration of a particle moving along the

𝑥-axis at time 𝑡 > 0 is given by 𝑎(𝑡) = 1∕𝑡2. When

𝑡 = 1 second, the particle is at 𝑥 = 2 and has velocity

−1 unit per second. If 𝑥(𝑡) is the particle’s position,

then the position when 𝑡 = e seconds is

𝑥 = −2.(A) 𝑥 = −1.(B) 𝑥 = 0.(C)

𝑥 = 1.(D) 𝑥 = 2.(E)

1647. If
´
𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥 = 3 and

´
𝑏

𝑎
𝑔(𝑥) 𝑑𝑥 = −2, then

which of the following must be true?

I. 𝑓 (𝑥) > 𝑔(𝑥) for all 𝑎 ≤ 𝑥 ≤ 𝑏

II.

ˆ
𝑏

𝑎

[𝑓 (𝑥) + 𝑔(𝑥)] 𝑑𝑥 = 1

III.

ˆ
𝑏

𝑎

[𝑓 (𝑥)𝑔(𝑥)] 𝑑𝑥 = −6

I only(A) II only(B) III only(C)

II, III only(D) I, II, and III(E)

1648. The graph of 𝑓 is shown below. Approximate´ 3
−3 𝑓 (𝑥) 𝑑𝑥 using the trapezoid rule with 3 equal sub-

divisions.

𝑥

𝑦

−3 −2 −1 0 1 2 3

1

2

3

4

𝑓

9
4(A)

9
2(B) 9(C) 18(D) 36(E)

1649. The graph of the function 𝑓 on the interval

[−4, 4] is shown below. Compute
´ 4
−4 |𝑓 (𝑥)| 𝑑𝑥.

𝑥

𝑦

−4 −3 −2 −1 1 2 3 4

−2

−1

1

2

3

1(A) 2(B) 5(C) 8(D) 9(E)

1650. If 𝑓 (𝑥) =
ˆ 2𝑥

2

1
√
𝑡
3 + 1

𝑑𝑡, then 𝑓
′(1) =

0(A)
1
3(B)

2
3(C)

√
2(D)

√
3
3(E)

1651. The area enclosed by the two curves 𝑦 = 𝑥2 − 4
and 𝑦 = 𝑥 − 4 is given by

ˆ 1

0

(
𝑥 − 𝑥2

)
𝑑𝑥(A)

ˆ 1

0

(
𝑥
2 − 𝑥

)
𝑑𝑥(B)

ˆ 2

0

(
𝑥 − 𝑥2

)
𝑑𝑥(C)

ˆ 2

0

(
𝑥
2 − 𝑥

)
𝑑𝑥(D)

ˆ 4

0

(
𝑥
2 − 𝑥

)
𝑑𝑥(E)
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6.1 A Part, And Yet, Apart...
Find antiderivatives of the following by parts.

1879.
ˆ
𝑥 ln(𝑥) 𝑑𝑥

1880.
ˆ

arctan(𝑥) 𝑑𝑥

1881.
ˆ

2𝑥 e𝑥 𝑑𝑥

1882.
ˆ

3𝜃 sin(2𝜃) 𝑑𝜃

1883.
ˆ

arcsin(2𝑥) 𝑑𝑥

1884.
ˆ

ln(4𝑥) 𝑑𝑥

1885.
ˆ

2𝑥𝑥 𝑑𝑥

1886.
ˆ (

𝑥
2 − 5𝑥

)
e𝑥 𝑑𝑥

1887.
ˆ

e𝑥 sin(𝑥) 𝑑𝑥

1888.
ˆ
𝑥 sec2(𝑥) 𝑑𝑥

1889.
ˆ
𝑥 sin(𝑥) 𝑑𝑥

1890.
ˆ
𝑥
2 sin(𝑥) 𝑑𝑥

1891.
ˆ
𝑥
3 sin(𝑥) 𝑑𝑥

1892.
ˆ
𝑥 ln

(√
𝑥

)
𝑑𝑥

Solve the differential equations.

1893.
𝑑𝑦

𝑑𝑥

= 𝑥
2 e4𝑥

1894.
𝑑𝑦

𝑑𝑥

= 𝑥
2 ln(𝑥)

1895.
𝑑𝑦

𝑑𝜃

= sin
(√

𝜃

)

1896.
𝑑𝑦

𝑑𝜃

= 𝜃 sec(𝜃) tan(𝜃)

Solve the following.

1897. Find the area bounded by the curve 𝑦 = ln(𝑥)
and the lines 𝑦 = 1 and 𝑥 = e2.

1898. Find the area bounded by the curve 𝑦 = ln(𝑥+3),
the line 𝑦 = 1, and the 𝑦-axis.

1899. Find the area of the region bounded entirely by

the curves 𝑦 = ln(𝑥) and 𝑦 = ln2(𝑥).

1900. Find the area between the curves 𝑦 = 5 e𝑥 and

𝑦 = 4𝑥3 + ln(𝑥) over the interval [1, 2].

1901. Find the volume of the solid generated by revolv-

ing the region in the first quadrant bounded by the co-

ordinate axes, the curve 𝑦 = e𝑥, and the line 𝑥 = ln(2)
about the line 𝑥 = ln(2).

1902. Find the average value of 𝑦 = 2 e−𝑥 cos(𝑥) over

the interval [0, 2𝜋].

1903. Let 𝑅 be the region bounded by the graph of

𝑦 = sin(𝑥) and the 𝑥-axis over the interval [0, 𝜋]. Find

the volume of the solid generated when 𝑅 is revolved

about a) the 𝑥-axis and b) the 𝑦-axis.

1904. Graph the function 𝑓 (𝑥) = 𝑥 sin(𝑥) in the win-

dow 0 ≤ 𝑥 ≤ 3𝜋, −5 ≤ 𝑦 ≤ 10, using an 𝑥-scale of 𝜋

and a 𝑦-scale of 5. Find the area of the region between

𝑓 and the 𝑥-axis for

0 ≤ 𝑥 ≤ 𝜋a)

𝜋 ≤ 𝑥 ≤ 2𝜋b)

2𝜋 ≤ 𝑥 ≤ 3𝜋c)

What pattern do you see here? What is the area

between the curve and the 𝑥-axis for 𝑛𝜋 ≤ 𝑥 ≤

(𝑛 + 1)𝜋 for any nonnegative integer 𝑛?

d)

Advertising may be described as the science of arresting human intelligence long enough to get money from it. —Stephen Leacock
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7.5 More Questions of Convergence...
Which of the series below converge absolutely, which
converge conditionally, and which diverge?

2226.
∞∑

𝑛=1
(−1)𝑛+1 (0.1)

𝑛

𝑛

2227.
∞∑

𝑛=1
(−1)𝑛+1 𝑛

𝑛
3 + 1

2228.
∞∑

𝑛=1
(−1)𝑛 sin(𝑛)

𝑛
2

2229.
∞∑

𝑛=1
(−1)𝑛+1 1 + 𝑛

𝑛
2

2230.
∞∑

𝑛=1
(−1)𝑛+1 𝑛

√
10

2231.
∞∑

𝑛=1
(−1)𝑛+1 𝑛

𝑛 + 1

2232.
∞∑

𝑛=1
(−5)−𝑛

2233.
∞∑

𝑛=1

cos(𝑛𝜋)
𝑛

√
𝑛

2234.
∞∑

𝑛=1
(−1)𝑛+1 (𝑛!)

2

(2𝑛)!

2235.
∞∑

𝑛=1
(−1)𝑛+1 (2𝑛)!

2𝑛𝑛!𝑛

2236.
∞∑

𝑛=1

(−1)𝑛+1
√
𝑛 +

√
𝑛 + 1

2237.
∞∑

𝑛=1

(−1)𝑛+1
(1 + 1∕𝑛)𝑛

2238.
∞∑

𝑛=1

(−1)𝑛+1

5𝑛

2239.
∞∑

𝑛=1

(−3)𝑛

(𝑛 + 1)!

2240.
∞∑

𝑛=1

(−1)𝑛(𝑛 + 2)!
e𝑛

2241.
∞∑

𝑛=1
(−1)𝑛 ln(𝑛)

𝑛

2242.
∞∑

𝑛=1
(−1)𝑛+1 𝑛

2

𝑛 + 1

2243.
∞∑

𝑛=1
(−1)𝑛+1 1

4𝑛

2244.
∞∑

𝑛=1
(−1)𝑛

√
𝑛

𝑛 + 1

2245.
∞∑

𝑛=1
(−1)𝑛 5𝑛

𝑛
2 + 1

2246.
∞∑

𝑛=1

(−1)𝑛

𝑛
1∕2 + 𝑛3∕2

2247.
∞∑

𝑛=1

(−1)𝑛(𝑛 − 3)
(𝑛 + 1000)3∕2

In problems 2248 through 2255, estimate the error in
using the first four terms to approximate the sum.

2248.
∞∑

𝑛=1
(−1)𝑛+1 1

𝑛

2249.
∞∑

𝑛=1
(−1)𝑛+1 1

10𝑛

2250.
∞∑

𝑛=1
(−1)𝑛 1

𝑛!

2251.
∞∑

𝑛=1

(
−1
4

)𝑛

2252.
∞∑

𝑛=1
(−1)𝑛 𝑛

100𝑛

2253.
∞∑

𝑛=1
(−1)𝑛 1

(2𝑛)!

2254.
∞∑

𝑛=2
(−1)𝑛 ln(𝑛)

2𝑛

2255.
∞∑

𝑛=1
(−1)𝑛 arctan(𝑛)

𝑛
2 + 1

2256. Suppose 𝑎
𝑛
= 1
√
𝑛

+ (−1)𝑛

𝑛

for all positive inte-

gers 𝑛.

Show that 𝑎
𝑛
≥ 0.a)

Show that {𝑎
𝑛
} → 0 as 𝑛 → ∞.b)

Explain why the series

∞∑

𝑛=1
(−1)𝑛𝑎

𝑛
diverges.c)

2257. Let 𝑎
𝑛
= 1 + 2𝑛

1 + 3(2𝑛)
.

Does lim
𝑛→∞

𝑎
𝑛

exist? If so, find it.a)

Does

∞∑

𝑛=0
𝑎
𝑛

converge? Explain.b)

Does

∞∑

𝑛=0
(−1)𝑛𝑎

𝑛
converge? Explain.c)

Even fairly good students, when they have obtained the solution of the problem and written down neatly the argument, shut their books

and look for something else. Doing so, they miss an important and instructive phase of the work. ... A good teacher should understand

and impress on his students the view that no problem whatever is completely exhausted. One of the first and foremost duties of the teacher

is not to give his students the impression that mathematical problems have little connection with each other, and no connection at all with

anything else. We have a natural opportunity to investigate the connections of a problem when looking back at its solution. —George
Polya


