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FIRST PREFACE

For years Lassiter Math Team students asked if they could host a math tourna-

ment, to which we replied that if they brought us a written test and ciphering

questions we would send out invitations. Then in 2000, Lassiter High School

student Garrett Webb showed up with a complete contest. He wrote the first

Lassiter Invitational Mathematics Tournament and started a tradition that has

lived on for at least 18 years. Students at Lassiter write and run this annual

tournament that has hosted up to 500 students from over 50 schools. Garrett

and Ethan Trewitt were the main contributors during the first 2 years, but writ-

ing the tournament is now an entire math team effort, with almost all members

of the math team submitting potential questions.

Because of how the team works together to edit questions, it would be im-

possible to list all the students who have contributed questions for the Lassiter

Invitational Tournaments. However, usually one or two students will take re-

sponsibility for actually creating and editing the tests, writing the solutions and

running the competition. Some of these student leaders have been Garrett and

Ethan, Matt Speer, Brooks Andrews, Jonathan Rodean, Andy Vesper, Adam

Tart, Carine Davila, Michael Clark, Katie Vesper, Phillip Mote, Martin Copen-

haven, Miles Dillon Edwards, Michael Wilson, Katie Crane, Andrew Couch,

Brian Cohn, and Nicholas Lindell. We thank these students as well as all the

other wonderful math team members from Lassiter High School.

And most of all, we are so thankful that Chuck Garner took the time to or-

ganize these questions in a logical order and write such wonderful explanations

of the concepts presented. He really did fulfill Garrett’s original desire that stu-

dents would learn mathematics from the Lassiter Invitational as well as compete

in a mathematics tournament. Thank you, Chuck for all your hard work.

Debbie Poss and Don Slater
November 2017

ix



SECOND PREFACE

Debbie Poss and Don Slater are master teachers. They have nurtured such won-

derful mathematical talent in their students over the years, as evidenced by the

problems in this collection. All the problems in this book come from the an-

nual Lassiter High School Inivtational Mathematics Tournament, held the first

Saturday in December each year. The Lassiter Math Team students write the

problems, and are edited by Debbie and Don, so they are ultimately responsi-

ble for the quality of the problems. However, the students they mentor do such

a fantastic job coming up with challenging and intriguing problems, Don and

Debbie are really responsible for the entire process.

The problems contained herein are from the 2003 through 2012 LHS tour-

naments. Each tournament offers a 30-problem written test, 10-problem indi-

vidual ciphering, and a multi-part team round called a “power question.” And

each of these rounds are offered in both varsity and junior varsity divisions. The

test is unique in that only the first 25 problems are multiple-choice; the last 5

problems on each test are free-response. Thus, with two 30-problem tests each

year for 10 years, there are 600 problems and solutions in this book. Also in-

cluded are a few original problems and select power question problems. (The

ciphering problems are not included.) Along with that are introductory remarks

and illustrative examples in each chapter.

This project started in November 2016 and the first draft of the book was

completed in January 2017. This was initially undertaken without the know-

eldge of Don and Debbie, as a surprise for them.

Chuck Garner
November 2017

xi



CHAPTER 1

ALGEBRA

Most of the problems in this section fall into two categories: those which require

manipulation of symbols and expressions to reduce or simplify an expression,

or those in which a situation is described for which assigning a variable is help-

ful. Certainly other algebraic techniques are useful, such as solving equations,

factoring, and combining like terms. We hope you are familiar enough with

those techniques so we can focus on other algebraic things.

Absolute Value. One of those other algebraic things is the idea of absolute
value. You possibly have some intuitive notion of what absolute value means,

but we need a definition. Anything important begins with definitions. Without

definitions, we can never know what precisely we are talking about.
∗

Absolute

value is no exception.

Definition. The absolute value of 𝑥, denoted |𝑥|, is defined to be

|𝑥| =

{
𝑥 if 𝑥 is positive or zero

−𝑥 if 𝑥 is negative.

Another way to define the absolute value of 𝑥 is that |𝑥| is the distance from 𝑥

to zero along a number line.

For example, by the function-definition of absolute value, we have

| − 7| = −(−7) = 7.
∗
“Mathematics may be defined as the subject in which we never know what we are talking about,

nor whether what we are saying is true.” — Bertrand Russell

3



4 CHAPTER 1. ALGEBRA

More intuitively, we note that |−7| is a distance of 7 units from zero on a number

line; hence, |−7| = 7. This notion of distance helps us solve a variety problems

involving absolute value.

Means. Another of the concepts on which we focus on are means.

Definition. Suppose 𝑎 and 𝑏 are real numbers. The arithmetic mean of 𝑎 and 𝑏

is (𝑎 + 𝑏)∕2 (this is also called simply the average of 𝑎 and 𝑏). The geometric
mean of 𝑎 and 𝑏 is

√
𝑎𝑏. The harmonic mean of 𝑎 and 𝑏 is 2𝑎𝑏∕(𝑎 + 𝑏).

A note about the harmonic mean: this mean is actually the reciprocal of the

average of the reciprocals. Indeed,

1
1∕𝑎 + 1∕𝑏

2

= 2
1∕𝑎 + 1∕𝑏

= 2
(𝑎 + 𝑏)∕(𝑎𝑏)

= 2𝑎𝑏
𝑎 + 𝑏

.

There is more about these means in the chapter on Sequences and Series.

Determinants. In this chapter are also problems on determinants.

Definition. The determinant of four real numbers 𝑎, 𝑏, 𝑐, and 𝑑 is defined to be

the quantity 𝑎𝑑 − 𝑏𝑐 represented by the symbol

|
|
|
|

𝑎 𝑏

𝑐 𝑑

|
|
|
|
.

In particular, the above expression is called a 2-by-2 determinant. A 3-by-3
determinant is found by computing three related 2-by-2 determinants in the fol-

lowing manner.

|
|
|
|
|
|

𝑎1 𝑎2 𝑎3
𝑏1 𝑏2 𝑏3
𝑐1 𝑐2 𝑐3

|
|
|
|
|
|

= 𝑎1
|
|
|
|

𝑏2 𝑏3
𝑐2 𝑐3

|
|
|
|
− 𝑎2

|
|
|
|

𝑏1 𝑏3
𝑐1 𝑐3

|
|
|
|
+ 𝑎3

|
|
|
|

𝑏1 𝑏2
𝑐1 𝑐2

|
|
|
|

This procedure is called the expansion along the first row and the associated

2-by-2 determinants are called the principle minors.

For example,

|
|
|
|
|
|

2 3 1
−1 2 4
5 −2 3

|
|
|
|
|
|

= 2
|
|
|
|

2 4
−2 3

|
|
|
|
− 3

|
|
|
|

−1 4
5 3

|
|
|
|
+

|
|
|
|

−1 2
5 −2

|
|
|
|

= 2[6 − (−8)] − 3[−3 − 20] + [2 − 10]
= 2[14] − 3[−23] + [−8]
= 28 + 69 − 8 = 89.
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Determinants are useful for finding areas and volumes and such. If a square

matrix
†

is denoted𝑀 , then we denote the determinant of that matrix as det𝑀 .

An interesting property of matrices and their determinants is the content of the

next theorem.

Theorem. Let𝑀 and𝑁 be 2-by-2 matrices of real numbers. Then det(𝑀𝑁) =
(det𝑀)(det𝑁).

Proof. Let 𝑀 and 𝑁 be the 2-by-2 matrix

𝑀 =
[
𝑎 𝑏

𝑐 𝑑

]

and 𝑁 =
[
𝑝 𝑞

𝑟 𝑠

]

where 𝑎, 𝑏, 𝑐, 𝑑, 𝑝, 𝑞, 𝑟, and 𝑠 are real numbers. Then, by definition, det𝑀 =
𝑎𝑑 − 𝑏𝑐 and det𝑁 = 𝑝𝑠 − 𝑞𝑟. Now, we compute the product𝑀𝑁 . This is

𝑀𝑁 =
[
𝑎 𝑏

𝑐 𝑑

] [
𝑝 𝑞

𝑟 𝑠

]

=
[
𝑎𝑝 + 𝑏𝑟 𝑎𝑞 + 𝑏𝑠
𝑐𝑝 + 𝑑𝑟 𝑐𝑞 + 𝑑𝑠

]

.

The determinant of 𝑀𝑁 is therefore

det(𝑀𝑁) = (𝑎𝑝 + 𝑏𝑟)(𝑐𝑞 + 𝑑𝑠) − (𝑐𝑝 + 𝑑𝑟)(𝑎𝑞 + 𝑏𝑠)
= 𝑎𝑐𝑝𝑞 + 𝑎𝑑𝑝𝑠 + 𝑏𝑐𝑞𝑟 + 𝑏𝑑𝑟𝑠 − 𝑎𝑐𝑝𝑞 − 𝑏𝑐𝑝𝑠 − 𝑎𝑑𝑞𝑟 − 𝑏𝑑𝑟𝑠
= 𝑎𝑑𝑝𝑠 + 𝑏𝑐𝑞𝑟 − 𝑏𝑐𝑝𝑠 − 𝑎𝑑𝑞𝑟
= (𝑎𝑑 − 𝑏𝑐)(𝑝𝑠 − 𝑞𝑟)
= (det𝑀)(det𝑁),

which was what we wanted to prove. �

As a special case, consider the square of the matrix 𝐴: 𝐴 ⋅ 𝐴 = 𝐴
2
. Then

by this theorem, where𝑀 = 𝐴 and 𝑁 = 𝐴, we have det(𝐴2) = (det 𝐴)2.

Roots of Polynomials. Finally, also collected here are problems concern-

ing roots of polynomials. Most of the problems do not require one to actually

find the roots. Most are easily solved if one knows Viéte’s relations.
‡

The idea

behind Viéte’s relations is that there is a relationship between the roots of a

polynomial and the polynomial’s coefficients. This relationship is clear if we

consider, for example, the fact that (𝑥 − 3)(𝑥 + 2) = 𝑥2 − 𝑥 − 6. The roots are

clearly −2 and 3. However, upon distributing, we see that 1 is the sum of the

†
A square matrix is a matrix with the same number of rows as columns.

‡
Named after 16th century French mathematician, François Viéte (pronounced “vee-et” with the

stress on the second syllable).
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roots and−6 is the product of the roots. We can express this idea in general: Let

𝑝(𝑥) be a polynomial with roots 𝑟1, 𝑟2, . . . , 𝑟
𝑛

(not necessarily distinct). Then

𝑝(𝑥) = 𝑎
𝑛
𝑥
𝑛 + 𝑎

𝑛−1𝑥
𝑛−1 + 𝑎

𝑛−2𝑥
𝑛−2 +⋯ + 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0

= 𝑎
𝑛
(𝑥 − 𝑟1)(𝑥 − 𝑟2)(𝑥 − 𝑟3)⋯ (𝑥 − 𝑟

𝑛−1)(𝑥 − 𝑟𝑛).

The roots are related to the coefficients by the following.

Sum of the roots: −
𝑎
𝑛−1
𝑎
𝑛

= 𝑟1 + 𝑟2 +⋯ + 𝑟
𝑛
=

𝑛∑

𝑖=1
𝑟
𝑖

Sum of the pairwise products:
𝑎
𝑛−2
𝑎
𝑛

=
𝑛∑

𝑖=1,𝑗=1,𝑖≠𝑗
𝑟
𝑖
𝑟
𝑗

Sum of the 𝑘-wise products: (−1)𝑘
𝑎
𝑛−𝑘
𝑎
𝑛

=
𝑛∑

𝑖1≠𝑖2≠⋯≠𝑖
𝑘

𝑟
𝑖1
𝑟
𝑖2
⋯ 𝑟

𝑖
𝑘

Product of the roots: (−1)𝑛
𝑎0
𝑎
𝑛

= 𝑟1𝑟2⋯ 𝑟
𝑛
=

∏
𝑟
𝑖

For example, the roots 𝑟1, 𝑟2, 𝑟3, and 𝑟4 of 3𝑥4 − 5𝑥3 + 7𝑥2 − 8𝑥 + 1 must

satisfy

𝑟1 + 𝑟2 + 𝑟3 + 𝑟4 = −−5
3

= 5
3

𝑟1𝑟2 + 𝑟1𝑟3 + 𝑟1𝑟4 + 𝑟2𝑟3 + 𝑟2𝑟4 + 𝑟3𝑟4 =
7
3

𝑟1𝑟2𝑟3 + 𝑟1𝑟2𝑟4 + 𝑟2𝑟3𝑟4 = (−1)3−8
3

= 8
3

𝑟1𝑟2𝑟3𝑟4 = (−1)4 1
3
= 1

3

The sum of the squares of the roots, i.e., 𝑟
2
1+𝑟

2
2+⋯+𝑟2

𝑛
, can also be found in

terms of the coefficients. This can be done by generalizing the familiar property

that

𝑎
2 + 𝑏2 + 𝑐2 = (𝑎 + 𝑏 + 𝑐)2 − 2(𝑎𝑏+ 𝑎𝑐 + 𝑏𝑐).

In our case of 𝑛 roots, we write

𝑟
2
1 + 𝑟

2
2 +⋯ + 𝑟2

𝑛
=

(
𝑟1 + 𝑟2 +⋯ + 𝑟

𝑛

)2 − 2
(
𝑟1𝑟2 + 𝑟1𝑟3 +⋯ + 𝑟

𝑛−1𝑟𝑛
)

=
(

−
𝑎
𝑛−1
𝑎
𝑛

)2
− 2

(
𝑎
𝑛−2
𝑎
𝑛

)

=
(
𝑎
𝑛−1
𝑎
𝑛

)2
−

2𝑎
𝑛−2
𝑎
𝑛

.
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In the example above, 𝑟
2
1 + 𝑟

2
2 + 𝑟

2
3 + 𝑟

2
4 = (5∕3)2 − 2(7∕3) = −17∕9.

§

1.1 Algebra Examples

Example 1.1. (JV 2011, #7)

Twice a number increased by 3 is four times the number decreased by 15. Com-

pute the number.

(A) −9 (B) −6 (C) −2 (D) 6 (E) 9

Solution. Here, it useful to assign variables.
¶

Call the number 𝑛. Then 2𝑛+3 =
4𝑛 − 15. Solving, we have 18 = 2𝑛, or 𝑛 = 9. Thus, E. �

The next example demonstrates how to manipulate an expression involving

a variable to answer the question, but without ever determining the value of the

variable.

Example 1.2. (Varsity 2005, #25)

If 𝑥 − 3 = 5∕𝑥, then find 𝑥
3 − 14𝑥.

(A) 15 (B) 10 (C) 2005 (D) 101 (E) 22

Solution. Working with expressions which have variables in denominators is

difficult. So, when possible, clear fractions. With this in mind, we multiply

through by 𝑥 to get 𝑥
2 − 3𝑥 = 5, or 𝑥

2 = 3𝑥 + 5. Now we use this to simplify

the expression we wish to find:

𝑥
3 − 14𝑥 = 𝑥

(
𝑥
2 − 14

)

= 𝑥 (3𝑥 + 5 − 14)
= 𝑥(3𝑥 − 9)

At this point, it looks like we are stuck. But factoring out a 3 and using the

original equation 𝑥 − 3 = 5∕𝑥 is the key.

= 3𝑥(𝑥 − 3)

= 3𝑥
(5
𝑥

)

= 3(5) = 15.

§
The fact that the sum of squares is negative implies that some of the roots are imaginary.

¶
I’m sure this was a shock.
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Note that we used the original relationship𝑥−3 = 5∕𝑥 twice to help us simplify.

In doing so, we did not need to find the actual value of 𝑥 in order to evaluate the

expression.
‖

Thus, A. �

Example 1.3. (Varsity 2004, #16)

What is the sum of the reciprocals of the roots of the following function?

𝑓 (𝑥) = 𝑥4 + 2𝑥3 − 13𝑥2 − 14𝑥 + 24

(A) 7
12

(B) 13
24

(C) − 7
12

(D) − 1
12

(E) −13
24

Solution. Before we blindly use Viéte’s relations, let’s investigate just what is

being asked. This is a fourth degree polynomial, so there are up to four distinct

roots. Call these roots 𝑟1, 𝑟2, 𝑟3, and 𝑟4. Then the sum of the reciprocals is

1
𝑟1

+ 1
𝑟2

+ 1
𝑟3

+ 1
𝑟4

=
𝑟2𝑟3𝑟4 + 𝑟1𝑟3𝑟4 + 𝑟1𝑟2𝑟4 + 𝑟1𝑟2𝑟3

𝑟1𝑟2𝑟3𝑟4
.

But the numerator of this fraction is the sum of triple-products (sum of the 𝑘-

wise products where 𝑘 = 3), and the denominator is the product of the roots.

Recall that the coefficient of the 𝑥
𝑚

term in a polynomial is 𝑎
𝑚

. Then we may

write the sum of the reciprocals in terms of the coefficients:

1
𝑟1

+ 1
𝑟2

+ 1
𝑟3

+ 1
𝑟4

=
(−1)3𝑎4−3∕𝑎4
(−1)4𝑎0∕𝑎4

= −
𝑎1
𝑎0
.

Since we have 𝑎0 = 24 and 𝑎1 = −14, the sum of the reciprocals of the roots is

−(−14∕24) = 7∕12. Thus, A. �

Example 1.4.
Find all solutions to

|
|
|
2𝑥3 − 1||

|
= 17.

Solution. We want to determine all values of 𝑥 such that 2𝑥3 − 1 is a distance

of 17 from zero. Since both 17 and −17 are 17 units from zero, this implies that

either 2𝑥3 − 1 is equal to 17 or equal to −17. Hence, we have the two equations

2𝑥3 − 1 = 17 and 2𝑥3 − 1 = −17.

Solving the first one leads to the equation 2𝑥3 = 18 so that 𝑥 = 3
√
9. Solving

the second one leads to the equation 2𝑥3 = −16 so that 𝑥 = 3
√
−8 = −2. Hence

the solutions are −2 and
3
√
9. �

‖
But I’m sure you could find the actual value of 𝑥, couldn’t you?
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The equation in the above example led to two different equations. This is

because there will always be two nonzero numbers on a number line which are

equal distances from zero (unless the number in question is actually zero, of

course).

Example 1.5. (Varsity 2009, #6)

If 𝑓 (𝑥) = |3𝑥−4| and 𝑔(𝑥) = |1−2𝑥| and if 𝑔(𝑓 (𝑥)) = 0, find a possible value

for 12𝑥.

(A) −18 (B) −15 (C) −6 (D) 3 (E) 14

Solution. We form the composition
∗∗
𝑔(𝑓 (𝑥)) by taking the expression for 𝑓

and replacing it for 𝑥 in the function 𝑔. This gives

𝑔(𝑓 (𝑥)) = |1 − 2𝑓 (𝑥)| = |1 − 2|3𝑥 − 4|| .

Setting this equal to 0 gives

|1 − 2|3𝑥 − 4|| = 0

which implies that

1 − 2|3𝑥 − 4| = 0.

Isolating the absolute value on the left side gives us 2|3𝑥−4| = 1 so that either

2(3𝑥 − 4) = 1 or 2(3𝑥 − 4) = −1.

Solving each of these equations gives us, respectively, 𝑥 = 9∕6 and 𝑥 = 7∕6.

Thus the possible values for 12𝑥 are 12(9∕6) = 2 ⋅9 = 18 and 12(7∕6) = 2 ⋅7 =
14. The only one listed as an answer choice is 14. Thus, E. �

Most equations involving absolute value will result in more than one equa-

tion, and therefore will result in more than one solution. It is possible that some

solutions will be extraneous. Any possible solutions should be checked against

the original equation.

Another kind of algebra problem is what we call the defined operation prob-

lem. By “defined operations” we mean those problems which define some new

binary operator in terms of familiar operations. These are algebraic or compu-

tational in nature, but they cause some people new to competition mathematics

a bit of confusion. Let’s clear up any confusion with an example or two, ok?

Example 1.6.
Define the operation 𝑎⋆𝑏 for real numbers 𝑎 and 𝑏 as 𝑎⋆𝑏 = 𝑎2 −𝑏2. Compute

17 ⋆ (5 ⋆ 3).
∗∗

For more on the composition of functions, see the chapter on Functions.
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Solution. We first compute 5 ⋆ 3 as 5 ⋆ 3 = 52 − 32 = 25 − 9 = 16. Then

17 ⋆ (5 ⋆ 3) = 17 ⋆ 16 = 172 − 162 = 289 − 256 = 33. �

Example 1.7.
Define the operation 𝑥△𝑦 for real numbers 𝑥 and 𝑦 as 𝑥△𝑦 = 𝑥

2 + 𝑥𝑦 − 𝑦2.

Determine the positive value of 𝑥 such that 𝑥△8 = 0.

Solution. We have 𝑥△8 = 𝑥
2 + 8𝑥 − 64, so we want to solve the equation

𝑥
2 + 8𝑥 − 64 = 0. By the quadratic formula,

††

𝑥 =
−8 ±

√
64 + 4 ⋅ 64
2

= −4 ± 4
√
5.

The positive value of 𝑥 is therefore −4 + 4
√
5. �

1.2 Algebra Problems

Problem 1.1. (JV 2009, #5)

Emily has two times as many apples as Daniel. Daniel has one-third as many

apples as Matthew. Matthew has two more apples than Sawyer. If Sawyer has

52 apples, find the total number of apples that these students have.

(A) 36 (B) 54 (C) 56 (D) 158 (E) 160

Problem 1.2. (JV 2003, #1)

Solve: 6(2𝑥 − 3(4 − 2𝑥)) = 4((2𝑥 − 3) − (5 − 2𝑥)).

(A) −5
2

(B) 5
2

(C) 5
4

(D) 32
19

(E) 89
16

Problem 1.3. (JV 2012, #21)

If 𝑎 ⊕ 𝑏 = 𝑎 + 𝑎𝑏−1, evaluate 3⊕ (1⊕ −2).
(A) 21

2 (B) 23
4 (C) 31

2 (D) 4 (E) 9

††
See the chapter on Quadratics for more on the quadratic formula.
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Problem 1.4. (JV 2005, #16)

Suppose that # is an operation applied to positive real numbers such that 𝑎#𝑏 =
𝑎
𝑏−1

. What is 3#(2#3)?
(A) 3 (B) 8 (C) 9 (D) 27 (E) 81

Problem 1.5. (JV 2003, #23)

Solve for all values of 𝑥: |𝑥 − 6| > 2𝑥 + 9.

(A) 6 < 𝑥 < 15 (B) −1 < 𝑥 < 6 (C) 𝑥 < −1 or 𝑥 > 6
(D) 𝑥 < −1 (E) 𝑥 < −15

Problem 1.6. (JV 2010, #29)

The zeros of a polynomial function 𝑝(𝑥) = 2𝑥3 − 𝑥2 − 𝑎𝑥 − 6 are −2, 𝑟1, and

𝑟2. Find 𝑟1 + 𝑟2.

Problem 1.7. (JV 2008, #2)

Suppose that 𝑎 = 1, 𝑏 = 3, 𝑐 = 5, and 𝑑 = 11. If 𝑎 becomes 3, 𝑏 and 𝑐 do

not change, and the average value of 𝑎, 𝑏, 𝑐, and 𝑑 remains constant, then what

must 𝑑 become?

(A) 11 (B) 1 (C) 13 (D) 10 (E) 9

Problem 1.8. (JV 2005, #28)

The average test grade for a class of 30 students was 84. If the 18 girls had an

average of 90 for the test, what was the average of the boys’ test grades?

Problem 1.9. (Varsity 2007, #7)

What is the sum of all the complex roots of the following polynomial?

4𝑥4 + 3𝑥3 − 37𝑥2 + 57𝑥 − 12

(A) −4 (B) −3 (C) 12 (D) −57
4

(E) −3
4
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Problem 1.10. (JV 2003, #7)

Which of the following is a factor of 𝑥
3 + 4𝑥2 − 17𝑥 − 60?

(A) 𝑥 − 5 (B) 𝑥 − 3 (C) 𝑥 − 2 (D) 𝑥 + 3 (E) 𝑥 + 4

Problem 1.11. (JV 2009, #11)

Little Bo Peep is having trouble keeping track of her sheep. This time she hasn’t

lost them, but she doesn’t know how many she has. However, she does know

that:

• On December 18, 2006, she had 100 sheep.

• Every March, the number of sheep she has triples.

• Every September, she sells 100 sheep.

Given that today is December 5, 2009, how many sheep does she have today?

(A) 100 (B) 1400 (C) 1500 (D) 5100 (E) 5200

Problem 1.12. (JV 2005, #27)

Solve for all real values of 𝑝: |5𝑝 + 3| = |2𝑝 + 2|.

Problem 1.13. (Varsity 2004, #6)

Evaluate the determinant
|
|
|
|

sin 60◦ cos 30◦
cos 180◦ cos 45◦

|
|
|
|
.

(A)

√
6 + 2

√
3

4
(B)

√
6 +

√
3

4
(C)

2
√
3 −

√
6

4

(D)

√
6 − 2

√
3

4
(E)

√
6
4

+ 1
2

Problem 1.14. (Varsity 2007, #3)

We define 𝑥 ⟂ 𝑦 to be the expression 3𝑥+2𝑦. What is the value of (3 ⟂ 2)−(2 ⟂
3)?
(A) −6 (B) −1 (C) 0 (D) 1 (E) 6
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Problem 1.15. (JV 2008, #4)

How many distinct solutions does the following equation have?

|
|
|
𝑥
2 − 3𝑥 + 2||

|

2
+ 1 = 0

(A) 0 (B) 1 (C) 2 (D) 3 (E) 4

Problem 1.16. (Varsity 2004, #11)

Simplify the determinant

|
|
|
|
|
|

4 −5 𝑥

1 3 6
7 2𝑥 −2

|
|
|
|
|
|

.

(A) 2𝑥2 − 69𝑥 + 196 (B) 𝑥2 − 45𝑥 + 122 (C) −2𝑥2 + 69𝑥 + 244
(D) 2𝑥2 − 69𝑥 − 244 (E) −𝑥2 + 45𝑥 − 98

Problem 1.17. (Varsity 2012, #6)

The harmonic mean of two numbers is equal to twice their arithmetic mean

minus their geometric mean. The sum of the two numbers is 10. Find their

product.

(A) −25 (B) −10 (C) 5 (D) 10 (E) 25

Problem 1.18. (JV 2005, #26)

If 𝑝(𝑥) = 𝑥3 − 31𝑥 + 30, then what is the smallest root of 𝑝(𝑥)?

Problem 1.19. (JV 2010, #28)

Two high school classes took the same exam. One class of 35 students had a

mean grade of 70 while the other class of 25 had a mean grade of 85. What is

the mean grade for all students in both classes?

Problem 1.20. (JV 2009, #2)

If 𝑟 ⋄ 𝑝 = 5𝑝2 + 2𝑟 − 1, evaluate
2 ⋄ 1

−18 ⋄ 3
⋄

3 ⋄ 1
−7 ⋄ 2

.

(A) 7 (B) 11 (C) 17 (D) 19 (E) 21
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Problem 1.21. (JV 2007, #9)

Which of the answer choices is equal to the following expression?

𝑥
−2
𝑦
3
𝑧
−1

𝑥
−2 − 𝑦−3

(A)
𝑥
2
𝑦
3

𝑥 − 𝑧
(B) 1 (C)

𝑦
3 (
𝑥
2 − 𝑦3

)

𝑥
2
𝑧

(D) 𝑥𝑦𝑧 (E)
𝑦
6

𝑦
3
𝑧 − 𝑥2𝑧

Problem 1.22. (Varsity 2010, #22)

Deborah and Donald had the same grade on the last calculus quiz, and, for both

of them, it was their highest quiz score this semester. It brought Deborah’s quiz

average from 83 to 86 and Donald’s from 88 to 90. How many quizzes has each

student in the class taken?

(A) 4 (B) 5 (C) 6 (D) 7 (E) 8

Problem 1.23. (JV 2011, #23)

Find the sum of 0 and all the solutions to |3𝑥 + 21| − 8 = −2.

(A) −14 (B) −10 (C) 0 (D) 7 (E) 21

Problem 1.24. (JV 2004, #27)

What is the largest root of 𝑝(𝑥) = 𝑥3 − 5𝑥2 − 2𝑥 + 24?

Problem 1.25. (Varsity 2007, #9)

Let 𝑥 be a positive variable. What is the maximum possible value of the expres-

sion below?
1

1 + 𝑥
+ 1

1 + 1∕𝑥

(A) 1 (B) 2 (C)
√
2 (D) 3

2
(E) 4

Problem 1.26. (JV 2010, #10)

Let 𝐴 =
[

4 6
−2 1

]

. What is the determinant of 𝐴
−1

?

(A) 1
16

(B) 1
8

(C) 3
16

(D) 1
4

(E) 16
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Problem 1.27. (Varsity 2006, #11)

If 𝑓 (𝑥) = |3 − 2𝑥| and 𝑔(𝑥) = |𝑥 − 5|, find the sum of the two 𝑥-values for

which 𝑓 (𝑔(𝑥)) = 𝑥.

(A) 0 (B) 28
3

(C) 13 (D) 15 (E) 46
3

Problem 1.28. (JV 2006, #2)

In simplest form, the expression

4𝑥
𝑥 − 4

4𝑥 − 4𝑥
𝑥 − 4

is equivalent to:

(A) 1
𝑥 − 5

(B) 1
𝑥 − 4

(C) 1
𝑥 − 3

(D) 1
𝑥 − 2

(E) 1
4 − 𝑥

Problem 1.29. (Varsity 2010, #10)

Let

[
3 4
7 1

]

. What is the determinant of 𝐴
3
?

(A) −25 (B) −376 (C) −1465 (D) −15625 (E) −29750

Problem 1.30. (Varsity 2012, #25)

Let 𝑥 and 𝑦 be integers whose harmonic mean is 8 and 𝑥 ≤ 𝑦. Find the sum of

all possible values of 𝑥.

Problem 1.31. (Varsity 2005, #27)

Find the sum of the squares of the reciprocals of the roots of 2𝑥3−𝑥2−2𝑥+1 = 0.

Problem 1.32. (JV 2011, #13)

If
14𝑥 − 30
3𝑥2 − 27

= 𝑎

𝑥 − 3
+ 𝑏

𝑥 + 3
, then compute 3𝑎 − 𝑏.

(A) −2 (B) −1 (C) 0 (D) 1 (E) 2
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Problem 1.33. (JV 2008, #25)

Suppose that 𝑦 > 7∕2 and 𝑦
2 − 7𝑦 + 3 = 0. If 𝑧 = 𝑦 + 2 and 𝑥 = 𝑦 − 3, then

what is the value of 𝑥𝑧 − 6𝑥?

(A) 3
√
37 (B) 12 (C) 9 (D) 37 (E) 7

Problem 1.34. (Varsity 2008, #17)

Find the sum of all real numbers 𝑥 satisfying the equation

|
|
|
𝑥
2 + 2008𝑥− 2007||

|
= |

|
|
𝑥
2 + 2008𝑥 − 2009||

|
.

(A) 0 (B) 1004 (C) −1004 (D) −2008 (E) 2008

Problem 1.35. (JV 2003, #27)

For which value(s) of 𝑥 will

|
|
|
|
|
|

2 1 𝑥

0 −2 𝑥

−2 𝑥 3

|
|
|
|
|
|

=
|
|
|
|

𝑥 5
3 −6

|
|
|
|
?

Problem 1.36. (JV 2012, #18)

Find 3 + 2 +
3

2 +
3

2 +
3

2 +⋯

.

(A) 6 (B) 7 (C) 8 (D) 9 (E) 10

Problem 1.37. (Varsity 2012, #20)

Given that 𝑟 is a root of 𝑥
2 + 3𝑥 + 6 = 0, find 𝑟

3 + 4𝑟2 + 9𝑟 + 8.

(A) −4 (B) −2 (C) 0 (D) 2 (E) 4

Problem 1.38. (JV 2006, #17)

If 𝑎 + 1
𝑎

= 3, what is the value of
|
|
|
|
𝑎 − 1

𝑎

|
|
|
|
?

(A) 21∕2 (B) 3
2

(C) 2 (D) 3 (E) 51∕2
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Problem 1.39. (Varsity 2006, #9)

Suppose 𝑃 (𝑥) is a polynomial with integer coefficients that have no common

factors. If two of the roots of 𝑃 (𝑥) are 3 + 4𝑖 and 2 −
√
6, find the 𝑦-intercept

of 𝑃 (𝑥) where 𝑃 (𝑥) has the least possible degree.

(A) −50 (B) −25 (C) −10 (D) 10 (E) 50

Problem 1.40. (Varsity 2003, #22)

The & operator is defined as follows for all positive integers 𝑎 and 𝑏:

𝑏 & 𝑎 = 𝑎 & 𝑏 = 𝑎 & (𝑎 + 𝑏).

If 5 & 6 = 11, find 7 & 25.

(A) 32 (B) 18 (C) 11 (D) 2 (E) Cannot be determined


